1
|
El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:129. [PMID: 39407282 PMCID: PMC11481588 DOI: 10.1186/s13068-024-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
Collapse
Affiliation(s)
- R El-Araby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo, Egypt.
| |
Collapse
|
2
|
Pugazhendhi A, Kamarudin SK, Chinnathambi A, Alharbi SA, G R. Investigation of bionano additives in red algae Cyanidioschyzon merolae ultrasonified MgO/MWCNT catalyzed biodiesel in optimized engine performance. ENVIRONMENTAL RESEARCH 2024; 258:119352. [PMID: 38876416 DOI: 10.1016/j.envres.2024.119352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with biodiesel yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significance in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30 wt% of biodiesel in diesel exhibited work efficiency, and also exhibited low pour point and, lower viscosity values. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the combustion ability of fuel owing to the oxygen storage capacity of CeO2. Further, this combination produced a satisfactory calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of biodiesel blend ultrasonifacted with 1:1 mass ratio of Fe2O3 and CeO2 was observed to be around -7 °C and 53 °C respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30 wt% BD in diesel showed tremendous increase in brake thermal efficiency, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively with 1:1 Fe2O3 and CeO2 mixed biodiesel blend. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - S K Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Chemical Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh -11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh -11451, Saudi Arabia
| | - Ramya G
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Tamil Nadu, India
| |
Collapse
|
3
|
Senusi W, Ahmad MI, Binhweel F, Shalfoh E, Alsaedi S, Shakir MA. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33239-33258. [PMID: 38696017 DOI: 10.1007/s11356-024-33533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.
Collapse
Affiliation(s)
- Wardah Senusi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ehsan Shalfoh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sami Alsaedi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohammad Aliff Shakir
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
4
|
Neto CBS, Gomes TG, Filho EXF, Fontes W, Ricart CAO, de Almeida JRM, de Siqueira FG, Miller RNG. An Enzymatic and Proteomic Analysis of Panus lecomtei during Biodegradation of Gossypol in Cottonseed. J Fungi (Basel) 2024; 10:321. [PMID: 38786676 PMCID: PMC11121953 DOI: 10.3390/jof10050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Cotton is an important plant-based protein. Cottonseed cake, a byproduct of the biodiesel industry, offers potential in animal supplementation, although the presence of the antinutritional sesquiterpenoid gossypol limits utilization. The macrofungus Panus lecomtei offers potential in detoxification of antinutritional factors. Through an enzymatic and proteomic analysis of P. lecomtei strain BRM044603, grown on crushed whole cottonseed contrasting in the presence of free gossypol (FG), this study investigated FG biodegradation over a 15-day cultivation period. Fungal growth reduced FG to levels at 100 μg/g, with a complex adaptive response observed, involving primary metabolism and activation of oxidative enzymes for metabolism of xenobiotics. Increasing activity of secreted laccases correlated with a reduction in FG, with enzyme fractions degrading synthetic gossypol to trace levels. A total of 143 and 49 differentially abundant proteins were observed across the two contrasting growth conditions after 6 and 12 days of cultivation, respectively, revealing a dynamic protein profile during FG degradation, initially related to constitutive metabolism, then later associated with responses to oxidative stress. The findings advance our understanding of the mechanisms involved in gossypol degradation and highlight the potential of P. lecomtei BRM044603 in cotton waste biotreatment, relevant for animal supplementation, sustainable resource utilization, and bioremediation.
Collapse
Affiliation(s)
- Clemente Batista Soares Neto
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| | - Taísa Godoy Gomes
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (W.F.); (C.A.O.R.)
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (W.F.); (C.A.O.R.)
| | | | | | - Robert Neil Gerard Miller
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| |
Collapse
|
5
|
Licata M, Farruggia D, Di Miceli G, Salamone F, Iacuzzi N, Tuttolomondo T. Productivity of two Brassica oilseed crops in a Mediterranean environment and assessment of the qualitative characteristics of raw materials for bioenergy purposes. Heliyon 2024; 10:e26818. [PMID: 38434387 PMCID: PMC10907774 DOI: 10.1016/j.heliyon.2024.e26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Rapeseed (Brassica napus var. oleifera D.C.) and Ethiopian mustard (Brassica carinata A. Braun) are promising industrial crops for cultivation in the Southern Mediterranean area due to profitable yields under semi-arid conditions. The exploitation of raw materials produced by these crops is very convenient for farmers to produce bioenergy directly on-farm and permits them to create a short agri-energy supply chain. The purpose of this study was to determine their yield performance under rainfed conditions and make an economic assessment of a combined heat and power plant (CHP) system operating on pure vegetable oil (PVO). Tests were conducted in Sicily (Italy) from 2012 to 2014. Seed and crop residue yields were detected. The analysis of seed, defatted seed meal and crop residue, and the chemical-physical aspects of PVO were carried out according to conventional protocols. A pilot CHP system was used for cogenerating electricity and heat. In general, rapeseed had the highest seed (2.27 t ha-1) and oil (1.11 t ha-1) yields. The average oil content ranged from 44.88 % (Ethiopian mustard) to 45.73 % dry matter (rapeseed). Ethiopian mustard performed better than rapeseed in terms of aboveground biomass yield (5.49 t ha-1), in both years. The two crops showed different fatty acid profiles of the oil mainly due to diverse content of erucic and oleic acids. The CHP system had an average consumption of 14.41 kg PVO h-1. These results confirm that the productivity of the species can be appreciable in the Southern Mediterranean area and indicate the use of raw materials of these crops as crucial to the development a sustainable short agri-energy supply chain.
Collapse
Affiliation(s)
- Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems, Via Della Libertà 203, 90143, Palermo, Italy
| | - Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| | - Teresa Tuttolomondo
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale Delle Scienze 13, Building 4, 90128, Palermo, Italy
| |
Collapse
|
6
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
7
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
8
|
Kathumbi LK, Home PG, Raude JM, Gathitu BB. Performance and emission characteristics of a diesel engine fuelled by biodiesel from black soldier fly larvae: Effects of synthesizing catalysts with citric acid. Heliyon 2023; 9:e21354. [PMID: 37954294 PMCID: PMC10637968 DOI: 10.1016/j.heliyon.2023.e21354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Biodiesel has several environmental benefits, such as biodegradability, renewability and lower soot emissions. However, biodiesel has undesirable properties such as higher viscosity and density and low calorific value compared to petroleum diesel, resulting in high Brake Specific Fuel Consumption (BSFC), reduced Brake Power (BP) and increased NOX emissions creating an environmental concerns in biodiesel development. This study investigated the effects of synthesizing transesterification catalysts (CaO and NaOH) with Citric Acid (CA) on the quality of biodiesel and biodiesel blends produced from Black Soldier Fly Larvae (BSFL) (Hermetia Illucens). The quality of biodiesel and blends was determined based on fuel properties, engine performance and emission composition characteristics. The tests were performed on a single-cylinder, four-stroke, Compression Ignition (CI) diesel engine at five loads at a constant speed of 1500 rpm. The results showed that synthesizing the catalysts with CA significantly affected the fatty acid profile of the biodiesel compared to physical fuel properties. B100 (pure BSFL biodiesel) exhibited higher BSFC by 10.57-13.97 % and lower BP by 4.21-7.83 % than diesel fuel. However, the Brake Thermal Efficiency (BTE) of biodiesel was higher than that of diesel fuel by 0.82-4.34 % at maximum load. Synthesizing catalysts with CA improved the viscosity of biodiesel by 0.93-2.81 % and effectively reduced NOX, HC and Smoke opacity by 2.23-3.16 %, 4.95-5.83 % and 20.51-41.15 %, respectively.
Collapse
Affiliation(s)
- Lilies K. Kathumbi
- Department of Civil Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, P.O. Box 62000-00200, Kenya
| | - Patrick G. Home
- Department of Soil, Water and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - James M. Raude
- Department of Soil, Water and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Benson B. Gathitu
- Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| |
Collapse
|
9
|
Eswaramoorthi Y, Pandian S, Sahadevan R. Kinetic studies on the extraction of oil from a new feedstock (Chukrasia tabularis L. seed) for biodiesel production using a heterogeneous catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14565-14579. [PMID: 36151438 DOI: 10.1007/s11356-022-23163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
This study has identified a new feedstock Chukrasia tabularis L. (C. tabularis) seed for the production of biodiesel. Oil was extracted from the seeds with and without autoclave-assisted ultrasonic homogenization (AUH) pretreatment using different solvents. The solvent n-hexane with AUH pretreatment yielded a maximum oil yield of 32 wt%. The kinetics and thermodynamics of the extraction process were studied in a batch. The data showed that extraction followed first-order kinetics with a rate constant of 1.4 × 10-4 min-1, activation energy of 63.604 kJ mol-1 and pre-exponential factors of 66.66 × 104 s-1. The physiochemical properties of the oil were determined from which it was identified that C. tabularis oil has high free fatty acid (FFA) content, requiring a single-step esterification cum transesterification reaction to produce biodiesel economically. The modified aryl diazonium salt reduction process was used to synthesize a heterogeneous acid catalyst (HAC) from activated carbon precursor and was used to catalyze biodiesel reaction. Furthermore, HAC was characterized by different analytical techniques and it was found that it had an acid site density of 1.02 mmol g-1 and a specific surface area of 602 m2 g-1. The parameters affecting the biodiesel process were studied to obtain a maximum biodiesel conversion of 98.5% at 6 wt% catalyst loading, 15:1 methanol to oil molar ratio, 120 min reaction time, 70 ºC reaction temperature, and 500 rpm stirring rate. Reusability studies were performed which showed that HAC can be recycled up to five cycles with a conversion above 90% in the fifth cycle. Moreover, the fuel properties of biodiesel were determined using standard methods and were compared with ASTM D6751 and EN14241 standards.
Collapse
Affiliation(s)
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | | |
Collapse
|
10
|
Attenuating the triacylglycerol catabolism enhanced lipid production of Rhodotorula strain U13N3. Appl Microbiol Biotechnol 2023; 107:1491-1501. [PMID: 36633623 DOI: 10.1007/s00253-023-12368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.
Collapse
|
11
|
Gojun M, Valinger D, Šalić A, Zelić B. Development of NIR-Based ANN Models for On-Line Monitoring of Glycerol Concentration during Biodiesel Production in a Microreactor. MICROMACHINES 2022; 13:1590. [PMID: 36295943 PMCID: PMC9607543 DOI: 10.3390/mi13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
During the production process, a whole range of analytical methods must be developed to monitor the quality of production and the desired product(s). Most of those methods belong to the group of off-line monitoring methods and are usually recognized as costly and long-term. In contrast, on-line monitoring methods are fast, reliable, simple, and repeatable. The main objective of this study was to compare different methods for monitoring total glycerol concentration as one of the indicators of process efficiency during biodiesel production in a batch reactor and in a microreactor. During the biodiesel production process, the glycerol concentration was measured off-line using standard methods based on UV-VIS spectrophotometry and gas chromatography. Neither method provided satisfactory results, namely, both analyses showed significant deviations from the theoretical value of glycerol concentration. Therefore, near infrared spectroscopy (NIR) analysis was performed as an alternative analytical method. The analysis using NIR spectroscopy was performed in two ways: off-line, using a sample collected during the transesterification process, and on-line by the continuous measurement of glycerol concentration in a rector. Obtained results showed a great NIR application potential not only for off-line but also for on-line monitoring of the biodiesel production process.
Collapse
Affiliation(s)
- Martin Gojun
- Deptartment of Reaction Engineering and Catalysis, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Laboratory for Measurement, Control and Automatisation, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Anita Šalić
- Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Bruno Zelić
- Deptartment of Reaction Engineering and Catalysis, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Department of Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia
| |
Collapse
|
12
|
Kumar Awasthi M, Yan B, Sar T, Gómez-García R, Ren L, Sharma P, Binod P, Sindhu R, Kumar V, Kumar D, Mohamed BA, Zhang Z, Taherzadeh MJ. Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. BIORESOURCE TECHNOLOGY 2022; 360:127620. [PMID: 35840028 DOI: 10.1016/j.biortech.2022.127620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Ricardo Gómez-García
- Universidade Cat́olica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laborat́orio Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create way 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Badr A Mohamed
- Department of Chemical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
13
|
Microorganisms as New Sources of Energy. ENERGIES 2022. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
|
14
|
Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. ENERGIES 2022. [DOI: 10.3390/en15082940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In line with the low-carbon strategy, the EU is expected to be climate-neutral by 2050, which would require a significant increase in renewable energy production. Produced biogas is directly used to produce electricity and heat, or it can be upgraded to reach the “renewable natural gas”, i.e., biomethane. This paper reviews the applied production technology and current state of biogas and biomethane production in Europe. Germany, UK, Italy and France are the leaders in biogas production in Europe. Biogas from AD processes is most represented in total biogas production (84%). Germany is deserving for the majority (52%) of AD biogas in the EU, while landfill gas production is well represented in the UK (43%). Biogas from sewage sludge is poorly presented by less than 5% in total biogas quantities produced in the EU. Biomethane facilities will reach a production of 32 TWh in 2020 in Europe. There are currently 18 countries producing biomethane (Germany and France with highest share). Most of the European plants use agricultural substrate (28%), while the second position refers to energy crop feedstock (25%). Sewage sludge facilities participate with 14% in the EU, mostly applied in Sweden. Membrane separation is the most used upgrading technology, applied at around 35% of biomethane plants. High energy prices today, and even higher in the future, give space for the wider acceptance of biomethane use.
Collapse
|
15
|
Abstract
Biofuel consists of non-fossil fuel derived from the organic biomass of renewable resources, including plants, animals, microorganisms, and waste. Energy derived from biofuel is known as bioenergy. The reserve of fossil fuels is now limited and continuing to decrease, while at the same time demand for energy is increasing. In order to overcome this scarcity, it is vital for human beings to transfer their dependency on fossil fuels to alternative types of fuel, including biofuels, which are effective methods of fulfilling present and future demands. The current review therefore focusses on second-generation lignocellulosic biofuels obtained from non-edible plant biomass (i.e., cellulose, lignin, hemi-celluloses, non-food material) in a more sustainable manner. The conversion of lignocellulosic feedstock is an important step during biofuel production. It is, however, important to note that, as a result of various technical restrictions, biofuel production is not presently cost efficient, thus leading to the need for improvement in the methods employed. There remain a number of challenges for the process of biofuel production, including cost effectiveness and the limitations of various technologies employed. This leads to a vital need for ongoing and enhanced research and development, to ensure market level availability of lignocellulosic biofuel.
Collapse
|
16
|
Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Wu S, Gao C, Pan H, Wei K, Li D, Cai K, Zhang H. Advancements in Tobacco (Nicotiana tabacum L.) Seed Oils for Biodiesel Production. Front Chem 2022; 9:834936. [PMID: 35118052 PMCID: PMC8804693 DOI: 10.3389/fchem.2021.834936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
With the increasing demand for fossil fuels, decreasing fossil fuel reserves and deteriorating global environment, humanity urgently need to explore new clean and renewable energy to replace fossil fuel resources. Biodiesel, as an environmentally friendly fuel that has attracted considerable attention because of its renewable, biodegradable, and non-toxic superiority, seems to be a solution for future fuel production. Tobacco (Nicotiana tabacum L.), an industrial crop, is traditionally used for manufacturing cigarettes. More importantly, tobacco seed is also widely being deemed as a typical inedible oilseed crop for the production of second-generation biodiesel. Advancements in raw material and enhanced production methods are currently needed for the large-scale and sustainable production of biodiesel. To this end, this study reviews various aspects of extraction and transesterification methods, genetic and agricultural modification, and properties and application of tobacco biodiesel, while discussing the key problems in tobacco biodiesel production and application. Besides, the proposals of new ways or methods for producing biodiesel from tobacco crops are presented. Based on this review, we anticipate that this can further promote the development and application of biodiesel from tobacco seed oil by increasing the availability and reducing the costs of extraction, transesterification, and purification methods, cultivating new varieties or transgenic lines with high oilseed contents, formulating scientific agricultural norms and policies, and improving the environmental properties of biodiesel.
Collapse
Affiliation(s)
- Shengjiang Wu
- Guizhou Academy of Tobacco Science, Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang, China
| | - Chuanchuan Gao
- Guizhou Tobacco Quality Supervision and Test Station, Guiyang, China
| | - Hu Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Kesu Wei
- Guizhou Academy of Tobacco Science, Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang, China
| | - Delun Li
- Guizhou Academy of Tobacco Science, Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang, China
| | - Kai Cai
- Guizhou Academy of Tobacco Science, Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang, China
- *Correspondence: Kai Cai, ; Heng Zhang,
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Kai Cai, ; Heng Zhang,
| |
Collapse
|
18
|
Nosheen A, Yasmin H, Naz R, Keyani R, Mumtaz S, Hussain SB, Hassan MN, Alzahrani OM, Noureldeen A, Darwish H. Phosphate solubilizing bacteria enhanced growth, oil yield, antioxidant properties and biodiesel quality of Kasumbha. Saudi J Biol Sci 2022; 29:43-52. [PMID: 35002394 PMCID: PMC8717164 DOI: 10.1016/j.sjbs.2021.09.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
Biodiesel is considered as a potential alternative energy source, but problem exists with the quantity and quality of feedstock used for it. To improve the feedstock quality of biodiesel, a field experiment was conducted under natural conditions. Cultivar Thori of kasumbha was used in the experiment. Commercialized biofertilizers were applied at the rate of 20 kg per acre and chemical fertilizer (diammonium phosphate) was applied as half dose (15 kg/ha). Results indicated that number of leaf plant-1, leaf area, number of seeds capitulum-1 was significantly increased by biofertilizer treatment alone (BF) and combine treatment of biofertilizer and chemical fertilizer (BFCF). Agronomic traits such as plant height, no. of branches of a plant, no. of capitulum/plant was improved significantly by BF treatment over the control. Maximum 1000 seed weight (41%) and seed yield (23%) were recorded in half dose of chemical fertilizers treatment (CFH). Seed oil content and seed phenolics were significantly improved by BF and CF treatments while maximum biodiesel yield was recorded by BF treatment. Maximum oleic acid was recorded by BF treatment while other fatty acids being maximum in control except linoleic acid in BFCF treatment. Results for specific gravity were non-significant while acid value and free fatty acid contents were substantially reduced by BF treatment as compared to other treatments. Maximum value of iodine number was recorded in BFCF treatment while tocopherol contents were improved by BF treatment. It is inferred that biofertilizer treatment alone perform better as compared to other treatments and 50% chemical fertilizer can be replaced using biofertilizer which is a good approach for sustainable environmental-friendly agriculture.
Collapse
Affiliation(s)
- Asia Nosheen
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
- Corresponding authors.
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
- Corresponding authors.
| | - Rabia Naz
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
| | - Syed Babar Hussain
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University, Park Road, ChakShahzad, Islamabad 44000, Pakistan
| | - Othman M. Alzahrani
- Department of Biology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Zaman F, Ishaq MW, Ul‐Haq N, Rahman WU, Ali MM, Ahmed F, Haq AU. Effect of Different Parameters on Catalytic Production of Biodiesel from Different Oils. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fakhar Zaman
- Beijing University of Chemical Technology Beijing Laboratory of Biomedical Materials 100029 Beijing China
| | - Muhammad Waqas Ishaq
- University of Science and Technology of China Department of Chemical Physics 230026 Hefei Anhui China
| | - Noaman Ul‐Haq
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Wajeeh Ur Rahman
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - M. Muzaffar Ali
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Faisal Ahmed
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Anwar ul Haq
- Riphah International University Department of Basic Sciences I-14 Campus 44000 Islamabad Pakistan
| |
Collapse
|
20
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
21
|
Mathew GM, Raina D, Narisetty V, Kumar V, Saran S, Pugazhendi A, Sindhu R, Pandey A, Binod P. Recent advances in biodiesel production: Challenges and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148751. [PMID: 34218145 DOI: 10.1016/j.scitotenv.2021.148751] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Mono alkyl fatty acid ester or methyl ethyl esters (biodiesel) are the promising alternative for fossil fuel or petroleum derived diesel with similar properties and could reduce the carbon foot print and the greenhouse gas emissions. Biodiesel can be produced from renewable and sustainable feedstocks like plant derived oils, and it is biodegradable and non-toxic to the ecosystem. The process for the biodiesel production is either through traditional chemical catalysts (Acid or Alkali Transesterification) or enzyme mediated transesterification, but as enzymes are natural catalysts with environmentally friendly working conditions, the process with enzymes are proposed to overcome the drawbacks of chemical synthesis. At present 95% of the biodiesel production is contributed by edible oils worldwide whereas recycled oils and animal fats contribute 10% and 6% respectively. Although every process has its own limitations, the enzyme efficiency, resistance to alcohols, and recovery rate are the crucial factors to be addressed. Without any benefit of doubt, production of biodiesel using renewable feedstocks and enzymes as the catalysts could be recommended for the commercial purpose, but further research on improving the efficiency could be an advantage.
Collapse
Affiliation(s)
- Gincy Marina Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Diksha Raina
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saurabh Saran
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arivalagan Pugazhendi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India.
| |
Collapse
|
22
|
Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production. ENERGIES 2021. [DOI: 10.3390/en14217334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microalgae are considered to be potentially attractive feedstocks for biodiesel production, mainly due to their fast growth rate and high oil content accumulated in their cells. In this study, the suitability for biofuel production was tested for Chlorella vulgaris, Chlorella fusca, Oocystis submarina, and Monoraphidium strain. The effect of nutrient limitation on microalgae biomass growth, lipid accumulation, ash content, fatty acid profile, and selected physico-chemical parameters of algal biodiesel were analysed. The study was carried out in vertical tubular photobioreactors of 100 L capacity. The highest biomass content at 100% medium dose was found for Monoraphidium 525 ± 29 mg·L−1. A 50% reduction of nutrients in the culture medium decreased the biomass content by 23% for O. submarina, 19% for Monoraphidium, 13% for C. vulgaris and 9% for C. fusca strain. Nutrient limitation increased lipid production and reduced ash content in microalgal cells. The highest values were observed for Oocystis submarina, with a 90% increase in lipids and a 45% decrease in ash content in the biomass under stress conditions. The fatty acid profile of particular microalgae strains was dominated by palmitic, oleic, linoleic, and linoleic acids. Nutrient stress increased the amount of saturated and unsaturated fatty acids affecting the quality of biodiesel, but this was determined by the type of strain.
Collapse
|
23
|
Abstract
An accelerating global energy demand, paired with the harmful environmental effects of fossil fuels, has triggered the search for alternative, renewable energy sources. Biofuels are arguably a potential renewable energy source in the transportation industry as they can be used within current infrastructures and require less technological advances than other renewable alternatives, such as electric vehicles and nuclear power. The literature suggests biofuels can negatively impact food security and production; however, this is dependent on the type of feedstock used in biofuel production. Advanced biofuels, derived from inedible biomass, are heavily favoured but require further research and development to reach their full commercial potential. Replacing fossil fuels by biofuels can substantially reduce particulate matter (PM), carbon monoxide (CO) emissions, but simultaneously increase emissions of nitrogen oxides (NOx), acetaldehyde (CH3CHO) and peroxyacetyl nitrate (PAN), resulting in debates concerning the way biofuels should be implemented. The potential biofuel blends (FT-SPK, HEFA-SPK, ATJ-SPK and HFS-SIP) and their use as an alternative to kerosene-type fuels in the aviation industry have also been assessed. Although these fuels are currently more costly than conventional aviation fuels, possible reduction in production costs has been reported as a potential solution. A preliminary study shows that i-butanol emissions (1.8 Tg/year) as a biofuel can increase ozone levels by up to 6% in the upper troposphere, highlighting a potential climate impact. However, a larger number of studies will be needed to assess the practicalities and associated cost of using the biofuel in existing vehicles, particularly in terms of identifying any modifications to existing engine infrastructure, the impact of biofuel emissions, and their chemistry on the climate and human health, to fully determine their suitability as a potential renewable energy source.
Collapse
|
24
|
Jha P, Schmidt S. State of biofuel development in sub-Saharan Africa: How far sustainable? RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 150:111432. [DOI: 10.1016/j.rser.2021.111432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
25
|
Magnetic silica particles functionalized with guanidine derivatives for microwave-assisted transesterification of waste oil. Sci Rep 2021; 11:17518. [PMID: 34471182 PMCID: PMC8410797 DOI: 10.1038/s41598-021-97097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
This study aimed to develop a facile synthesis procedure for heterogeneous catalysts based on organic guanidine derivatives superbases chemically grafted on silica-coated Fe3O4 magnetic nanoparticles. Thus, the three organosilanes that were obtained by reacting the selected carbodiimides (N,N′-dicyclohexylcarbodiimide (DCC), N,N′-diisopropylcarbodiimide (DIC), respectively 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) with 3-aminopropyltriethoxysilane (APTES) were used in a one-pot synthesis stage for the generation of a catalytic active protective shell through the simultaneous hydrolysis/condensation reaction with tetraethyl orthosilicate (TEOS). The catalysts were characterized by FTIR, TGA, SEM, BET and XRD analysis confirming the successful covalent attachment of the organic derivatives in the silica shell. The second aim was to highlight the capacity of microwaves (MW) to intensify the transesterification process and to evaluate the activity, stability, and reusability characteristics of the catalysts. Thus, in MW-assisted transesterification reactions, all catalysts displayed FAME yields of over 80% even after 5 reactions/activation cycles. Additionally, the influence of FFA content on the catalytic activity was investigated. As a result, in the case of Fe3O4@SiO2-EDG, a higher tolerance towards the FFA content can be noticed with a FAME yield of over 90% (for a 5% (weight) vs oil catalyst content) and 5% weight FFA content.
Collapse
|
26
|
A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The priority faced by energy systems in road transport is to develop and implement clean technologies. These actions are expected to reduce emissions and slow down climate changes. An alternative in this case may be the use of biodiesel produced from microalgae. However, its production and use need to be justified economically and technologically. The main objective of this study was to determine the emissions from an engine powered by biodiesel produced from the bio-oil of Chlorella protothecoides cultured with different methods, i.e., using a pure chemical medium (BD-ABM) and a medium based on the effluents from an anaerobic reactor (BD-AAR). The results obtained were compared to the emissions from engines powered by conventional biodiesel from rapeseed oil (BD-R) and diesel from crude oil (D-CO). The use of effluents as a medium in Chlorella protothecoides culture had no significant effect on the properties of bio-oil nor the composition of FAME. In both cases, octadecatrienoic acid proved to be the major FAME (50% wt/wt), followed by oleic acid (ca. 22%) and octadecadienoic acid (over 15%). The effluents from UASB were found to significantly reduce the biomass growth rate and lipid content of the biomass. The CO2 emissions were comparable for all fuels tested and increased linearly along with an increasing engine load. The use of microalgae biodiesel resulted in a significantly lower CO emission compared to the rapeseed biofuel and contributed to lower NOx emission. Regardless of engine load tested, the HC emission was the highest in the engine powered by diesel. At low engine loads, it was significantly lower when the engine was powered by microalgae biodiesel than by rapeseed biodiesel.
Collapse
|
27
|
Rita E, Chizoo E, Cyril US. Sustaining COVID-19 pandemic lockdown era air pollution impact through utilization of more renewable energy resources. Heliyon 2021; 7:e07455. [PMID: 34286129 PMCID: PMC8273224 DOI: 10.1016/j.heliyon.2021.e07455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
The lock down engendered by COVID-19 pandemic has impacted positively on the environment through reduction of the emissions of green house gases, CO2, CO and other pollutants into the atmosphere below the pre-COVID-19 levels. There are fears that the gains made in the environment during COVID-19 may be frittered away as nations around the world make serious efforts to boost the COVID-19 recessed economy through massive investments in the sectors of the economy that are not environmentally friendly. This paper emphasizes on the essence of maintaining the COVID-19 pandemic era environmental impact levels in post COVID-19 era without retarding the efforts towards economic recovery. World health organization (WHO) data from six regions between April and August 2020 was evaluated. Emission levels during the COVID-19 lockdown were reviewed. The global renewable energy potentials were ascertained. The paper suggests that investment in renewable energy resources for various countries’ energy needs will help sustain the green and clean environment created by the COVID-19 lockdown even after COVID-19 era lockdown. Also, building large scale and distributed energy storage infrastructure and application of artificial intelligence would ensure security of energy supply and handle unstable nature of solar and wind energy. The COVID-19 lockdown significantly reduced air pollution. The application of biofuels to generate energy and power was found to significantly reduce air pollutant emissions similar to COVID-19 lockdown.
Collapse
Affiliation(s)
- Eyisi Rita
- Electrical and Electronic Engineering Department, Alex Ekwueme Federal University, Ndufu Alike, Abakaliki, Nigeria
| | - Esonye Chizoo
- Chemical Engineering Department, Alex Ekwueme Federal University, Ndufu Alike, Abakaliki, Nigeria
| | - Ume Sunday Cyril
- Chemical Engineering Department, Alex Ekwueme Federal University, Ndufu Alike, Abakaliki, Nigeria
| |
Collapse
|
28
|
Souza LDA, Francisquetti EL, Dalagnol RD, Roman Junior C, Schanz MTG, Maier ME, Petzhold CL. PVC plasticizer from trimethylolpropane trioleate: synthesis, properties, and application. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20200102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Laura de Andrade Souza
- Universidade Federal do Rio Grande do Sul, Brasil; Instituto Federal do Rio Grande do Sul, Brasil
| | | | | | | | | | | | | |
Collapse
|