1
|
Jung H, Shin G, Park SB, Jegal J, Park SA, Park J, Oh DX, Kim HJ. Circular waste management: Superworms as a sustainable solution for biodegradable plastic degradation and resource recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:568-579. [PMID: 37812971 DOI: 10.1016/j.wasman.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Bioplastics offer a promising solution to plastic pollution, however, their production frequently relies on edible biomass, and their degradation rates remain inadequate. This study investigates the potential of superworms (Zophobas atratus larvae) for polybutylene succinate (PBS) waste management, aiming to achieve both resource recovery and biodegradation. Superworms exclusively fed on PBS for a month exhibited the same survival rate as those on a standard bran diet. PBS digestion yielded a 5.13% weight gain and a 23.23% increase in protein composition in superworms. Additionally, carbon isotope analyses substantiated the conversion of PBS into superworm components. Gut microbes capable of PBS biodegradation became progressively prominent, further augmenting the degradation rate of PBS under composting conditions (ISO 14855-1). Gut-free superworms fed with PBS exhibited antioxidant activities comparable to those of blueberries, renowned for their high antioxidant activity. Based on these findings, this study introduces a sustainable circular solution encompassing recycling PBS waste to generate insect biomass, employing insect gut and frass for PBS degradation and fertilizer, and harnessing insect residue as a food source. In essence, the significance of this research extends to socio-economic and environmental spheres, impacting waste management, resource efficiency, circular economy promotion, environmental preservation, industrial advancement, and global sustainability objectives. The study's outcomes possess the potential to reshape society's approach to plastic waste, facilitating a shift toward more sustainable paradigms.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
2
|
Cristóbal J, Federica Albizzati P, Giavini M, Caro D, Manfredi S, Tonini D. Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:166-176. [PMID: 37586221 DOI: 10.1016/j.wasman.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The EU Green Deal aims at solving the challenges related to plastic production, (mis-)use, and pollution. While the bioplastic industry is identified as one of the possible avenues to tackle the problem, bioplastic waste collection and management practices are still far from full-development and harmonisation. To inform policy makers on the best practices and their feasibility, this study quantifies environmental and economic impacts of compostable plastic packaging (CPP) waste management schemes by means of Life Cycle Assessment and Costing. Results show that, with respect to climate change and financial costs, the scheme leading to the highest benefits is collecting CPP with conventional plastic waste followed by mechanical sorting and recycling (saving ca. 306 kg CO2eq. t-1 at a net income of 3.7 EUR t-1). The second best option is collecting CPP with bio-waste followed by biological treatment (saving ca. 69 kg CO2eq. t-1 at a cost of 197 EUR t-1). Collecting CPP with conventional plastics followed by sorting and biological treatment is to be avoided. The trend on the other impact categories generally follows climate change. Ideally, closed loop is therefore preferred, but conditioned by (i) having high share of CPP in municipal waste (else sorting is economically unfeasible), (ii) good citizen's behaviour at source-segregation, and (iii) an established market for secondary material. Currently, overall benefits are limited by the low amounts, suggesting that the management choice could ultimately be based on rather simple technical and economic feasibility criteria while regulatory and management efforts should be focused on other waste streams with greater implications on environment.
Collapse
Affiliation(s)
- Jorge Cristóbal
- Joint Research Centre of the European Commission, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Paola Federica Albizzati
- Joint Research Centre of the European Commission, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Michele Giavini
- ARS Ambiente Srl, Via Carlo Noe 45, 21013 Gallarate, VA, Italy
| | - Dario Caro
- Joint Research Centre of the European Commission, Directorate B - Growth and Innovation, Unit B5 - Circular Economy and Sustainable Industry, Calle Inca Garcilaso, 41092 Seville, Spain
| | - Simone Manfredi
- Joint Research Centre of the European Commission, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Davide Tonini
- Joint Research Centre of the European Commission, Directorate B - Growth and Innovation, Unit B5 - Circular Economy and Sustainable Industry, Calle Inca Garcilaso, 41092 Seville, Spain
| |
Collapse
|
3
|
Gadaleta G, De Gisi S, Sorrentino A, Sorrentino L, Notarnicola M, Kuchta K, Picuno C, Oliviero M. Effect of Cellulose-Based Bioplastics on Current LDPE Recycling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4869. [PMID: 37445182 DOI: 10.3390/ma16134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The increased use of bioplastics in the market has led to their presence in municipal solid waste streams alongside traditional fossil-based polymers, particularly low-density polyethylene (LDPE), which bioplastics often end up mixed with. This study aimed to assess the impact of cellulose acetate plasticized with triacetin (CAT) on the mechanical recycling of LDPE. LDPE-CAT blends with varying CAT content (0%, 1%, 5%, 7.5%, and 10% by weight) were prepared by melt extrusion and analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, thermal analysis (thermogravimetric and differential scanning calorimetry), dynamic rheological measurements, and tensile tests. The results indicate that the presence of CAT does not significantly affect the chemical, thermal, and rheological properties of LDPE, and the addition of CAT at different levels does not promote LDPE degradation under typical processing conditions. However, the addition of CAT negatively impacts the processability and mechanical behavior of LDPE, resulting in the reduced quality of the recycled material. Thus, the presence of cellulose-based bioplastics in LDPE recycling streams should be avoided, and a specific sorting stream for bioplastics should be established.
Collapse
Affiliation(s)
- Giovanni Gadaleta
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Andrea Sorrentino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| | - Luigi Sorrentino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Kerstin Kuchta
- Circular Resource Engineering and Management, Hamburg University of Technology, Blohmstraße n. 15, D-21079 Hamburg, Germany
| | | | - Maria Oliviero
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| |
Collapse
|
4
|
Abdelshafy A, Hermann A, Herres‐Pawlis S, Walther G. Opportunities and Challenges of Establishing a Regional Bio-based Polylactic Acid Supply Chain. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200218. [PMID: 37483423 PMCID: PMC10362116 DOI: 10.1002/gch2.202200218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/03/2023] [Indexed: 07/25/2023]
Abstract
Polylactic acid (PLA) is the bioplastic with the highest market share. However, it is mainly produced from first-generation feedstock and there are various inconsistencies in the literature in terms of its production and recycling processes, carbon footprint, and prices. The aim of this study is to compile and contrast these aspects and investigate second-generation PLA production from technical, economic, and ecological perspectives simultaneously. The comprehensive analyses also show the chances and challenges of originating a PLA supply chain in a specific region. Herein, the German Federal State of North Rhine-Westphalia (NRW) has been chosen as a region of interest. In addition to highlighting the industrial capabilities and synergies, the study quantifies and illustrates the locations of different suitable second-generation feedstocks in the region. However, the identified potentials can be challenged by various obstacles such as the high demand of bioresources, feedstock quality, spatial aspects, and logistics. Furthermore, the substantial price gap between PLA and fossil-based plastics can also discourage the investors to include PLA on their portfolios. Thus, the study also provides recommendations to overcome these obstacles and promote the regional value chains of bioplastics which may serve as prototype for other regions.
Collapse
Affiliation(s)
- Ali Abdelshafy
- RWTH Aachen UniversityOperation Management52072Kackertstr. 7AachenGermany
- Bioeconomy Science Center (BioSC)AachenGermany
| | - Alina Hermann
- RWTH Aachen UniversityInstitute for Inorganic Chemistry52074Landoltweg 1aAachenGermany
- Bioeconomy Science Center (BioSC)AachenGermany
| | - Sonja Herres‐Pawlis
- RWTH Aachen UniversityInstitute for Inorganic Chemistry52074Landoltweg 1aAachenGermany
- Bioeconomy Science Center (BioSC)AachenGermany
| | - Grit Walther
- RWTH Aachen UniversityOperation Management52072Kackertstr. 7AachenGermany
- Bioeconomy Science Center (BioSC)AachenGermany
| |
Collapse
|
5
|
Gadaleta G, Ferrara C, De Gisi S, Notarnicola M, De Feo G. Life cycle assessment of end-of-life options for cellulose-based bioplastics when introduced into a municipal solid waste management system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161958. [PMID: 36737011 DOI: 10.1016/j.scitotenv.2023.161958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The partial degradation of cellulose-based bioplastics in industrial treatment of organic fraction of Municipal Solid Waste (MSW) opened to the investigation of further disposal routes for bioplastics in the waste management system. For this purpose, the environmental footprint of three MSW management scenarios differing only for the bioplastics final destination (organic, plastic or mixed waste streams) was assessed through a Life Cycle Assessment (LCA) approach. Results revealed how the treatment of bioplastics with organic waste achieved the worst environmental performance (5.8 kg CO2 eq/FU) for most impact categories. On the other hand, treatment with plastics and mixed waste achieved negative impact values (that mean avoided GHG emissions) of -9.8 and -7.7 kg CO2 eq/FU respectively, showing comparable benefits from these scenarios. The key reason was the lower quality of compost obtained from the organic treatment route, which reduced the environmental credits achieved by the energy recovery during anaerobic digestion.
Collapse
Affiliation(s)
- Giovanni Gadaleta
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Carmen Ferrara
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano, SA, Italy
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n.4, I-70125 Bari, Italy.
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Giovanni De Feo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano, SA, Italy
| |
Collapse
|
6
|
Kosheleva A, Gadaleta G, De Gisi S, Heerenklage J, Picuno C, Notarnicola M, Kuchta K, Sorrentino A. Co-digestion of food waste and cellulose-based bioplastic: From batch to semi-continuous scale investigation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:272-281. [PMID: 36521212 DOI: 10.1016/j.wasman.2022.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Only few studies on the behaviour of bioplastics in anaerobic co-digestion could be found in literature and most of them are conducted in batch mode. Despite the fact that continuous experiments confirm or add new insight to the findings acquired from batch ones, there is still lack of such studies. This work aims to cover this gap, carrying out a semi-continuous anaerobic co-digestion of food waste and cellulose acetate (which its behaviour under anaerobic environment is also quite unexplored). After a first evaluation of the potential methane production from each substrate at batch scale, the semi-continuous co-digestion of food waste and cellulose acetate was carried out in three configurations. During the semi-continuous process, a methane yield of 331 NmlCH4/gVS was generated from the co-digestion of food waste and cellulose acetate while bioplastics specimens achieved a weight loss of about 45 %. The results were both lower than the one obtained from batch co-digestion, although methane production rates were comparable regardless of being fed with or without bioplastics. An increase was registered after 65 days of semi-continuous process, due to the accumulation of CA specimens. This confirms the different degradation trends between bioplastics and food waste.
Collapse
Affiliation(s)
- Arina Kosheleva
- Hamburg University of Technology - Circular Resource Engineering and Management, Blohmstraße 15, D-21079 Hamburg, Germany
| | - Giovanni Gadaleta
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona, 4, I-70125 Bari, Italy.
| | - Joern Heerenklage
- Hamburg University of Technology - Circular Resource Engineering and Management, Blohmstraße 15, D-21079 Hamburg, Germany
| | - Caterina Picuno
- Hamburg University of Technology - Circular Resource Engineering and Management, Blohmstraße 15, D-21079 Hamburg, Germany
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Kerstin Kuchta
- Hamburg University of Technology - Circular Resource Engineering and Management, Blohmstraße 15, D-21079 Hamburg, Germany
| | - Andrea Sorrentino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi, 1, I-80055 Portici (Napoli), Italy
| |
Collapse
|