1
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Yadav A, Kumar R, Vaish V, Malik S, Rani S. Rising global temperatures and its impact on sleep behavior of male redheaded bunting (Emberiza bruniceps). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60108-60125. [PMID: 39369354 DOI: 10.1007/s11356-024-35160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Anthropogenic global warming is one of the most pervasive threats to nature and biodiversity. The magnitude with which earths' temperature is rising is affecting every lifeform uniquely; however, the studies highlighting the impacts of global warming on avian sleep are scarce. To this end, the present study was aimed at analyzing the impact of global warming on sleep behavior of a nocturnal migrant, Emberiza bruniceps. For this purpose, the birds were divided into two groups (N = 15 each), subjected to high (35 ± 1 °C) and low (19 ± 1 °C) temperature schedule with concurrent exposure to 8L:16D (short day; SD) photoperiod followed by 13L:11D (long day; LD). The experiment continued till 7 cycles of zugunruhe (LD) in birds. The results reveal significant impact of temperature treatment on initiation and quality of zugunruhe. Temporal distribution of activity and rest varied according to the temperature provided. Focusing on rest and specifically on sleep of birds, high ambient temperatures resulted in greater sleep fragmentation (evident by increased awakenings during night), whereas low temperature created a sleep conducive environment (evident by abundance of back sleep). Besides postural differences, high temperature resulted in reduced sleep duration, sleep onset latency and circulating plasma melatonin levels in comparison with low temperature suggesting the negative impact of high temperature on different sleep attributes. Not only sleep, seasonal physiology of birds such as hyperphagia, gain in body mass, and fat stores showed significant reduction in high temperature condition. Besides behavioral and physiological alterations, high ambient temperature led to elevated expression of temperature sensitive (trpv4, trpm8, hspa8, and hsp70) genes. Enhanced expression of chrm3 (responsible for wakefulness) also affirms sleep fragmentation in response to high temperature. Thus, the study highlights the negative impact of high temperature on birds' sleep behavior and seasonal physiology.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- CSIR-Central Drug Research Institute, Lucknow, India
| | - Raj Kumar
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Dr. B.R. Ambedkar Government Girls P.G. College Fatehpur, Prayagraj, UP, India
| | - Vaibhav Vaish
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shalie Malik
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sangeeta Rani
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
3
|
Connelly F, Johnsson RD, Mulder RA, Hall ML, Lesku JA. Experimental playback of urban noise does not affect cognitive performance in captive Australian magpies. Biol Open 2024; 13:bio060535. [PMID: 39069816 PMCID: PMC11340814 DOI: 10.1242/bio.060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.
Collapse
Affiliation(s)
- Farley Connelly
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Alameda County Resource Conservation District, Livermore, California 94550, USA
| | - Robin D. Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA
| | - Raoul A. Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michelle L. Hall
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bush Heritage Australia, Melbourne, Victoria 3000, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - John A. Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
4
|
Zhou X, Xu Y, Fang C, Ye C, Liang W, Fan Z, Ma X, Liu A, Zhang X, Luo Q. Integrated Transcriptomic-Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens. Int J Mol Sci 2024; 25:8704. [PMID: 39201389 PMCID: PMC11354726 DOI: 10.3390/ijms25168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Light is a key environmental factor regulating reproduction in avians. However, the mechanism of light intensity regulating ovarian development is still unclear. In this study, 5-week-old (5 wk) partridge broiler breeders were randomly divided into a low-light-intensity group (LL group) and a natural-light-intensity group (NL group) (n = 100). In the rearing period (5 wk to 22 wk), the light intensity of the LL group and NL group were 0.41 ± 0.05 lux and 45.39 ± 1.09 lux, and in the laying period (23 wk to 32 wk) they were 23.92 ± 0.06 lux and 66.93 ± 0.76 lux, respectively. Samples were collected on 22 wk and 32 wk. The results showed that the LL group had a later age at first egg and a longer laying period than the NL group. Serum P4 and LH levels in the LL group were higher than in the NL group on 22 wk (p < 0.05). On 32 wk, P4, E2, LH and FSH levels in the LL group were lower than in the NL group (p < 0.05). Ovarian transcriptomics and metabolomics identified 128 differentially expressed genes (DEGs) and 467 differential metabolites (DMs) on 22 wk; 155 DEGs and 531 DMs on 32 wk between two groups. An enrichment analysis of these DEGs and DMs identified key signaling pathways, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction. In these pathways, genes such as CYP21A1, SSTR2, and NPY may regulate the synthesis of metabolites, including tryptamine, triglycerides, and phenylalanine. These genes and metabolites may play a dominant role in the light-intensity regulation of ovarian development and laying performance in broiler breeders.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Broad HR, Dibnah AJ, Smith AE, Thornton A. Anthropogenic disturbance affects calling and collective behaviour in corvid roosts. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230185. [PMID: 38768208 PMCID: PMC11391286 DOI: 10.1098/rstb.2023.0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic communication plays an important role in coordinating group dynamics and collective movements across a range of taxa. However, anthropogenic disturbance can inhibit the production or reception of acoustic signals. Here, we investigate the effects of noise and light pollution on the calling and collective behaviour of wild jackdaws (Corvus monedula), a highly social corvid species that uses vocalizations to coordinate collective movements at winter roosting sites. Using audio and video monitoring of roosts in areas with differing degrees of urbanization, we evaluate the influence of anthropogenic disturbance on vocalizations and collective movements. We found that when levels of background noise were higher, jackdaws took longer to settle following arrival at the roost in the evening and also called more during the night, suggesting that human disturbance may cause sleep disruption. High levels of overnight calling were, in turn, linked to disruption of vocal consensus decision-making and less cohesive group departures in the morning. These results raise the possibility that, by affecting cognitive and perceptual processes, human activities may interfere with animals' ability to coordinate collective behaviour. Understanding links between anthropogenic disturbance, communication, cognition and collective behaviour must be an important research priority in our increasingly urbanized world. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hannah R Broad
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex J Dibnah
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney, 2052 NSW, Australia
| | - Anna E Smith
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| |
Collapse
|
6
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Tan H, Martin JM, Alton LA, Lesku JA, Wong BBM. Widespread psychoactive pollutant augments daytime restfulness and disrupts diurnal activity rhythms in fish. CHEMOSPHERE 2023; 326:138446. [PMID: 36940830 DOI: 10.1016/j.chemosphere.2023.138446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical pollution is a major driver of global change, with the capacity to alter key behavioural and physiological traits in exposed animals. Antidepressants are among the most commonly detected pharmaceuticals in the environment. Despite well-documented pharmacological effects of antidepressants on sleep in humans and other vertebrates, very little is known about their ecologically relevant impacts as pollutants on non-target wildlife. Accordingly, we investigated the effects of acute 3-day exposure of eastern mosquitofish (Gambusia holbrooki) to field-realistic levels (nominal concentrations: 30 and 300 ng/L) of the widespread psychoactive pollutant, fluoxetine, on diurnal activity patterns and restfulness, as indicators of disruptions to sleep. We show that exposure to fluoxetine disrupted diel activity patterns, which was driven by augmentation of daytime inactivity. Specifically, unexposed control fish were markedly diurnal, swimming farther during the day and exhibiting longer periods and more bouts of inactivity at night. However, in fluoxetine-exposed fish, this natural diel rhythm was eroded, with no differences in activity or restfulness observed between the day and night. As a misalignment in the circadian rhythm has been shown to adversely affect fecundity and lifespan in animals, our findings reveal a potentially serious threat to the survival and reproductive success of pollutant-exposed wildlife.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Grunst AS, Grunst ML, Raap T, Pinxten R, Eens M. Anthropogenic noise and light pollution additively affect sleep behaviour in free-living birds in sex- and season-dependent fashions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120426. [PMID: 36273698 DOI: 10.1016/j.envpol.2022.120426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Rapid anthropogenic transformation of environments exposes organisms to diverse disturbance factors, including anthropogenic noise pollution and artificial light at night (ALAN). These sensory pollutants interfere with acquisition of, and response to, environmental cues and can be perceived as stressors. Noise pollution and ALAN are often experienced simultaneously, and are thus likely to jointly affect organisms, either additively or interactively. Yet, combined effects of noise pollution and ALAN remain poorly elucidated. We studied combined effects of noise pollution and ALAN on the sleep behaviour of a free-living songbird, the great tit (Parus major). Sleep is widely conserved across animal taxa and fulfils essential functions, and research has demonstrated independent effects of both noise and ALAN on sleep. We measured noise and light levels at nest boxes and used infrared video-recording to assess sleep behaviour. Results did not support interactive effects of noise and ALAN. However, noise pollution and ALAN were both independently related to variation in sleep behaviour, in sex- and season-dependent fashions. Males, but not females, woke up and left the nest box ∼20 min later in the noisiest as compared to quietest environments (range: 44.2-79.4 dB), perhaps because males are more sensitive to acoustical cues that are masked by noise. Furthermore, as the season progressed from November to early March, birds woke up and left the nest box ∼35 min earlier relative to sunrise on territories with the lowest, but not the highest, light levels (range: 0.01-8.5 lux). Thus, the seasonal difference in sleep duration was dampened on light polluted territories. These effects could arise if ALAN interferes with birds' ability to sense and respond to increasing daylength, and could have fitness ramifications. Our study suggests that noise pollution and ALAN exert additive effects on sleep behaviour, and that these effects can be sex- and season-dependent.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Yorzinski JL, Troscianko J, Briolat E, Schapiro SJ, Whitham W. A songbird can detect the eyes of conspecifics under daylight and artificial nighttime lighting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120000. [PMID: 35995296 DOI: 10.1016/j.envpol.2022.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Eyes convey important information about the external and internal worlds of animals. Individuals can follow the gaze of others to learn about the location of salient objects as well as assess eye qualities to evaluate the health, age or other internal states of conspecifics. Because of the increasing prevalence of artificial lighting at night (ALAN), urbanized individuals can potentially garner information from conspecific eyes under both daylight and ALAN. We tested this possibility using a visual modeling approach in which we estimated the maximum distance at which individuals could detect conspecific eyes under daylight and high levels of ALAN. We also estimated the minimum light level at which individuals could detect conspecific eyes. Great-tailed grackles (Quiscalus mexicanus) were used as our study species because they are highly social and are unusual among birds in that they regularly gather at nocturnal roosts in areas with high levels of ALAN. This visual modelling approach revealed that grackles can detect conspecific eyes under both daylight and ALAN, regardless of iris coloration. The grackles could detect conspecific eyes at farther distances in daylight compared to ALAN. Our results highlight the potential importance of lighting conditions in shaping social interactions.
Collapse
Affiliation(s)
- Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, United Kingdom
| | - Emmanuelle Briolat
- Centre for Ecology & Conservation, University of Exeter, Penryn, United Kingdom
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Will Whitham
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA; Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| |
Collapse
|
10
|
Yadav A, Kumar R, Tiwari J, Vaish V, Malik S, Rani S. Effect of artificial light at night on sleep and metabolism in weaver birds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80422-80435. [PMID: 35716297 DOI: 10.1007/s11356-022-20875-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night is constantly minimizing the span of dark nights from the natural light-dark cycle of earth. Over the past century, the "lightscape" of earth has completely changed owing to technological advancements which subsequently changed the lifestyle of human as well as the nearby animal species. This motivated the present study, wherein we investigated the impact of light at night (LAN) on behavior and physiology of a diurnal passerine finch, baya weaver (Ploceus philippinus). A group of bird (N=10) exposed to 12L:12D photoperiod was initially subjected to dark nights (0 lux) for a period of 1.5 weeks followed by 5 lux, night light for a span of 4 weeks. The first week in LAN served as acute treatment with respect to the fourth week (chronic). The results reveal significant increase in nighttime activity and sleep loss with respect to acute LAN, while significant inclusion of drowsiness behavior during the day in response to chronic LAN. Besides these behavioral alterations, changes in physiological parameters such as reduction in body mass, loss of gradient between pre- and post- prandial blood glucose levels, and elevation in plasma corticosterone levels were more prominent during acute exposure of LAN. Plasma metabolites such as triglycerides, total protein, serum glutamic-oxaloacetic transaminase (SGOT), and creatinine concentrations also hiked in response to acute LAN treatment. Thus, acute exposure of LAN seems to serve as a novel environment for the bird leading to more pronounced impacts on behavioral and physiological observations during the experiment. In chronic exposure, the birds sort of adapted themselves to the prevailing circumstances as evident by decreased nighttime activity, rebound of sleep and corticosterone levels, etc. Thus, the study clearly demonstrates the differential impact of acute and chronic exposure of LAN on behavior and physiology of birds.
Collapse
Affiliation(s)
- Anupama Yadav
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India
| | - Raj Kumar
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India
| | - Jyoti Tiwari
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India
| | - Vaibhav Vaish
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Uttar Pradesh, 226007, Lucknow, India.
| |
Collapse
|
11
|
Gaviraghi Mussoi J, Stanley MC, Cain KE. Importance of sleep for avian vocal communication. Biol Lett 2022; 18:20220223. [PMID: 35975628 PMCID: PMC9382451 DOI: 10.1098/rsbl.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sleep is one of the few truly ubiquitous animal behaviours, and though many animals spend enormous periods of time asleep, we have only begun to understand the consequences of sleep disturbances. In humans, sleep is crucial for effective communication. Birds are classic models for understanding the evolution and mechanisms of human language and speech. Bird vocalizations are remarkably diverse, critical, fitness-related behaviours, and the way sleep affects vocalizations is likely similarly varied. However, research on the effects of sleep disturbances on avian vocalizations is shockingly scarce. Consequently, there is a critical gap in our understanding of the extent to which sleep disturbances disrupt communication. Here, we argue that sleep disturbances are likely to affect all birds' vocal performance by interfering with motivation, memory consolidation and vocal maintenance. Further, we suggest that quality sleep is likely essential when learning new vocalizations and that sleep disturbances will have especially strong effects on learned vocalizations. Finally, we advocate for future research to address gaps in our understanding of how sleep influences vocal learning and performance in birds.
Collapse
Affiliation(s)
| | - Margaret C Stanley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Smeltzer EA, Stead SM, Li MF, Samson D, Kumpan LT, Teichroeb JA. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm Behav 2022; 143:105181. [PMID: 35594742 DOI: 10.1016/j.yhbeh.2022.105181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Social status among group-living mammals can impact access to resources, such as water, food, social support, and mating opportunities, and this differential access to resources can have fitness consequences. Here, we propose that an animal's social status impacts their access to sleep opportunities, as social status may predict when an animal sleeps, where they sleep, who they sleep with, and how well they sleep. Our review of terrestrial mammals examines how sleep architecture and intensity may be impacted by (1) sleeping conditions and (2) the social experience during wakefulness. Sleeping positions vary in thermoregulatory properties, protection from predators, and exposure to parasites. Thus, if dominant individuals have priority of access to sleeping positions, they may benefit from higher quality sleeping conditions and, in turn, better sleep. With respect to waking experiences, we discuss the impacts of stress on sleep, as it has been established that specific social statuses can be characterized by stress-related physiological profiles. While much research has focused on how dominance hierarchies impact access to resources like food and mating opportunities, differential access to sleep opportunities among mammals has been largely ignored despite its potential fitness consequences.
Collapse
Affiliation(s)
- E A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S M Stead
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - M F Li
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada
| | - D Samson
- Department of Anthropology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - L T Kumpan
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
13
|
Aulsebrook AE, Jechow A, Krop-Benesch A, Kyba CCM, Longcore T, Perkin EK, van Grunsven RHA. Nocturnal lighting in animal research should be replicable and reflect relevant ecological conditions. Biol Lett 2022; 18:20220035. [PMID: 35291885 PMCID: PMC8923816 DOI: 10.1098/rsbl.2022.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In nature, light is a key driver of animal behaviour and physiology. When studying captive or laboratory animals, researchers usually expose animals to a period of darkness, to mimic night. However, ‘darkness’ is often poorly quantified and its importance is generally underappreciated in animal research. Even small differences in nocturnal light conditions can influence biology. When light levels during the dark phase are not reported accurately, experiments can be impossible to replicate and compare. Furthermore, when nocturnal light levels are unrealistically dark or bright, the research is less ecologically relevant. Such issues are exacerbated by huge differences in the sensitivity of different light meters, which are not always described in study methods. We argue that nocturnal light levels need to be reported clearly and precisely, particularly in studies of animals housed indoors (e.g. ‘<0.03 lux’ rather than ‘0 lux’ or ‘dark’), and that these light levels should reflect conditions that the animal would experience in a natural context.
Collapse
Affiliation(s)
- Anne E Aulsebrook
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Andreas Jechow
- Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Remote Sensing and Geoinformatics, GFZ German Centre for Geosciences, Potsdam, Germany
| | | | - Christopher C M Kyba
- Remote Sensing and Geoinformatics, GFZ German Centre for Geosciences, Potsdam, Germany
| | - Travis Longcore
- UCLA Institute of the Environment and Sustainability, Los Angeles, CA, USA
| | | | - Roy H A van Grunsven
- Dutch Butterfly Conservation, Mennonietenweg 10, 6702 AD, Wageningen, The Netherlands
| |
Collapse
|
14
|
Mohanty NP, Joshi M, Thaker M. Urban lizards use sleep sites that mirror the structural, thermal, and light properties of natural sites. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03101-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
16
|
Ren Z, Chen Y, Liu F, Ma X, Ma J, Liu G. Effects of artificial light with different wavelengths and irradiances on the sleep behaviors of Chestnut buntings (Emberiza rutila). BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1958542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhuofei Ren
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Yuqi Chen
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Fangbo Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Xinlong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Jianxiong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Gang Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| |
Collapse
|