1
|
In Vitro and In Vivo Biological Assays of Dextran Coated Iron Oxide Aqueous Magnetic Fluids. Pharmaceutics 2023; 15:pharmaceutics15010177. [PMID: 36678806 PMCID: PMC9865434 DOI: 10.3390/pharmaceutics15010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The iron oxide nanoparticles coated with different surface coatings were studied and characterized by multiple physicochemical and biological methods. The present paper aims at estimating the toxicity in vitro and in vivo of dextran coated iron oxide aqueous magnetic fluids. The in vitro studies were conducted by quantifying the viability of HeLa cells after their incubation with the samples (concentrations of 62.5−125−250−500 μg/mL at different time intervals). The estimation of the toxicity in vivo of administering dextran coated iron oxide aqueous magnetic fluids (DIO-AMF) with hydrodynamic diameter of 25.73 ± 4 nm to Male Brown Norway rats has been made. Different concentrations (62.5−125−250−500 μg/mL) of dextran coated iron oxide aqueous magnetic fluids were administered for 7 consecutive days. Hematology and biochemistry of the Male Brown Norway rats assessment was performed at various time intervals (24−72 h and 21−28 days) after intra-peritoneal injection. The results showed that high concentrations of DIO-AMF (250 and 500 μg/mL) significantly increased white blood cells, red blood cells, hemoglobin and hematocrit compared to the values obtained for the control group (p < 0.05). Moreover, following the administration of DIO-AMF, the levels of alkaline phosphatase and aspartate aminotransferase increased compared to the control group (p < 0.05). After DIO-AMF administration, no significant difference was observed in the levels of alanine aminotransferase, gamma-glutamyl transpeptidase, urea and creatinine compared to the control group (p < 0.05). The results of the present study showed that dextran coated iron oxide aqueous magnetic fluids in concentrations lower than 250 μg/mL are reliable for medical and pharmaceutical applications.
Collapse
|
2
|
Predoi SA, Ciobanu SC, Chifiriuc MC, Motelica-Heino M, Predoi D, Iconaru SL. Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010229. [PMID: 36614570 PMCID: PMC9821896 DOI: 10.3390/ma16010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Drinking water contamination has become a worldwide problem due to the highly negative effects that pollutants can have on human organisms and the environment. Hydroxyapatite (HAp) has the appropriate properties for the immobilization of various pollutants, being considered amongst the most cost-effective materials for water decontamination. The main objective of this study was to use synthesized hydroxyapatite for the elimination of Sr2+ ions from contaminated solutions. The hydroxyapatite used in the decontamination process was synthesized in the laboratory using an adapted method. The hydroxyapatite powder (HAp) resulting from the synthesis was analyzed both before and after the elimination of Sr2+ ions from contaminated solutions. The efficiency of the HAp nanoparticles in removing Sr2+ ions from contaminated solution was determined by batch adsorption experiments. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study the HAp samples before and after the removal of Sr2+ ions. The ability of HAp nanoparticles to eliminate strontium ions from contaminated solutions was established. Moreover, the removal of Sr2+ ions from the contaminated aqueous solutions was highlighted by ultrasound measurements. The value of the stability parameter calculated by ultrasonic measurements after the removal of Sr2+ ions from the contaminated solution was similar to that of double distilled water whose stability was used as reference. The outcomes of the batch experiments and the parameters obtained from Langmuir and Freundlich models indicated that the HAp nanoparticles had a strong affinity for the elimination of Sr2+ ions from polluted solutions. These results emphasized that HAp nanoparticles could be excellent candidates in the development of new technologies for water remediation. More than that, the outcomes of the cytotoxic assays proved that HAp nanoparticles did not induce any noticeable harmful effects against HeLa cells and did not affect their proliferation after 1 day and 7 days of incubation.
Collapse
Affiliation(s)
- Silviu Adrian Predoi
- Département de Physique, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
- Physique Fondamentale, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| | | | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
- Biological Sciences Division, The Romanian Academy, 25, Calea Victoriei, 010071 Bucharest, Romania
| | - Mikael Motelica-Heino
- Department of Civil Engineering and Environment, Université d’Orléans, ISTO, UMR 7327 CNRS, 1A Rue de la Férollerie, 45071 Orléans, France
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, 077125 Magurele, Romania
- Correspondence: (D.P.); (S.L.I.)
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, 077125 Magurele, Romania
- Correspondence: (D.P.); (S.L.I.)
| |
Collapse
|
3
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
4
|
Amirtharaj Mosas KK, Chandrasekar AR, Dasan A, Pakseresht A, Galusek D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022; 8:323. [PMID: 35621621 PMCID: PMC9140433 DOI: 10.3390/gels8050323] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Metallic materials such as stainless steel (SS), titanium (Ti), magnesium (Mg) alloys, and cobalt-chromium (Co-Cr) alloys are widely used as biomaterials for implant applications. Metallic implants sometimes fail in surgeries due to inadequate biocompatibility, faster degradation rate (Mg-based alloys), inflammatory response, infections, inertness (SS, Ti, and Co-Cr alloys), lower corrosion resistance, elastic modulus mismatch, excessive wear, and shielding stress. Therefore, to address this problem, it is necessary to develop a method to improve the biofunctionalization of metallic implant surfaces by changing the materials' surface and morphology without altering the mechanical properties of metallic implants. Among various methods, surface modification on metallic surfaces by applying coatings is an effective way to improve implant material performance. In this review, we discuss the recent developments in ceramics, polymers, and metallic materials used for implant applications. Their biocompatibility is also discussed. The recent trends in coatings for biomedical implants, applications, and their future directions were also discussed in detail.
Collapse
Affiliation(s)
| | - Ashok Raja Chandrasekar
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Amirhossein Pakseresht
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Dušan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
- Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia
| |
Collapse
|
5
|
Physicochemical Characterization of Europium-Doped Hydroxyapatite Thin Films with Antifungal Activity. COATINGS 2022. [DOI: 10.3390/coatings12030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Owing to its unique biological and physicochemical properties, hydroxyapatite (HAp) represents one of the most extensively studied biomaterials for biomedical applications. It is well known that Candida is currently one of the fungi frequently involved in the onset and development of post-implant infections and, owing to the appearance of antifungal resistance, it is quite difficult to treat despite all the tremendous efforts made in this regard by the scientific world. Therefore, in this context, we report for the first time in this paper, the development and characterization of europium-doped thin films (5EuHAp, xEu = 0.05) on a Si substrate by a spin-coating method. The results of ultrasound (US), zeta (ζ) potential, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) studies are presented. The XRD studies conducted on 5EuHAp suspension revealed the nanometric dimensions of the particles and sample purity. In addition, a moderate stability of the 5EuHAp suspension was observed. XPS measurements revealed the presence of Eu 3d in the 5EuHAp thin films. In the SEM micrographs, the surface uniformity and the absence of the surface defects could be observed. Moreover, the results of the FTIR studies showed the presence of the vibrational bands specific to the HAp structure in the studied sample. The antifungal activity of the HAp and 5EuHAp suspensions and coatings was evaluated using the Candida albicans ATCC 10231 (C. albicans) fungal strain. The qualitative assays of the antifungal properties of HAp and 5EuHAp coatings were also visualized by SEM and CLSM. The antifungal studies revealed that both 5EuHAp suspensions and coatings exhibited noticeable antifungal activity against C. albicans cells.
Collapse
|
6
|
Shokri M, Kharaziha M, Tafti HA, Eslaminejad MB, Aghdam RM. Synergic role of zinc and gallium doping in hydroxyapatite nanoparticles to improve osteogenesis and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112684. [DOI: 10.1016/j.msec.2022.112684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 10/19/2022]
|
7
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - T Siva
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| |
Collapse
|
8
|
Abstract
Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.
Collapse
|
9
|
Investigation of Spin Coating Cerium-Doped Hydroxyapatite Thin Films with Antifungal Properties. COATINGS 2021. [DOI: 10.3390/coatings11040464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.
Collapse
|
10
|
Abstract
It is known that iron is found as a trace element in bone tissue, the main inorganic constituent of which is hydroxyapatite. Therefore, iron-doped hydroxyapatite (HApFe) materials could be new alternatives for many biomedical applications. A facile dip coating process was used to elaborate the iron-doped hydroxyapatite (HApFe) nanocomposite coatings. The HApFe suspension used to prepare the coatings was achieved using a co-precipitation method, which was adapted in the laboratory. The quality of the HApFe suspension was assessed through dynamic light scattering (DLS), ultrasonic measurements, and zeta potential values. The hydroxyapatite XRD patterns were observed in the HApFe nanocomposite with no significant shifting of peak positions, thus suggesting that the incorporation of iron did not significantly modify the hydroxyapatite structure. The morphology of the HApFe nanoparticles was evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used in order to investigate the morphologies of HApFe particles and coatings, while their chemical compositions were assessed using energy-dispersive X-ray spectroscopy (EDS). The SEM results suggested that the HApFe consists mainly of spherical nanometric particles and that the surfaces of the coatings are continuous and homogeneous. Additionally, the EDS spectra highlighted the purity of the samples and confirmed the presence of calcium, phosphorous, and iron in the analyzed sample. The in vitro cytotoxicity of the HApFe suspensions and coatings was evidenced using osteoblast cells. The MTT assay showed that both the HApFe suspensions and coatings exhibited biocompatible properties.
Collapse
|
11
|
Antimicrobial Properties of Samarium Doped Hydroxyapatite Suspensions and Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-implant infections are a major health problem, and it is well-known that treating them with conventional drugs is accompanied by many disadvantages. The development of new biomaterials with enhanced antimicrobial properties are of major interest for the scientific world. The aim of this study was to synthesize and characterize hydroxyapatite doped with Samarium (Ca10−xSmx(PO4)6(OH)2, xSm = 0.05, 5Sm-HAp) suspensions, pellets and coatings. The 5Sm-HAp coatings on Si substrates were obtained by rf magnetron sputtering technique. The different techniques such as ultrasound measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Glow Discharge Optical Emission Spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to examine the obtained coatings. The results showed that the doped Sm ions entered the structure of hydroxyapatite successfully and Sm ions was uniformly doped onto the surface of the support. The depth profile curves of Ca, P, O, H, Ce and Si elements exhibit their presence from a surface to substrate interface as function of sputtering time. XPS analysis indicated as calcium-phosphate structures enriched in Sm3+ ions. Furthermore, the antimicrobial properties of the 5Sm-HAp suspensions, targets and coatings were assessed against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results of the antimicrobial assays highlighted that that the samples presented a strong antimicrobial activity against the tested microbial strains. The results showed that the coatings after 48 h of incubation inhibited the growth of all tested microbial strains under the value of 0.6 Log CFU/mL. This study shows that the 5Sm-HAp samples are good candidates for the development of new antimicrobial agents.
Collapse
|
12
|
Development of New Mg- or Sr-Containing Bioactive Interfaces to Stimulate Osseointegration of Metallic Implants. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of this study resides in the design and deposition of several types of bioactive interfaces with complex composition, targeting a superior osseointegration of bone implants. The experimental approach is framed by two oxide systems, SiO2‒CaO‒P2O5‒ZnO‒MgO and SiO2‒CaO‒P2O5‒ZnO‒SrO, while the percentage values were established as optimised solutions for ensuring wear resistance, bioactivity and beneficial effects on cell metabolism and reproduction. Moreover, two methods dedicated to fils growth (pulsed laser deposition and spin coating) were explored as potential variants for coating the bioinert materials and providing a transitional anchoring layer between the artificial substitute and host tissue. The obtained layers were evaluated as vitroceramic in nature, nanostructured in morphology and bioactive in relation to the physiological environment. The response of human fetal osteoblasts placed in contact with the new engineered surfaces was characterized by a significant proliferation from 1 to 4 days, which validates their suitability for hard tissue applications.
Collapse
|
13
|
Physico-Chemical Properties and In Vitro Antifungal Evaluation of Samarium Doped Hydroxyapatite Coatings. COATINGS 2020. [DOI: 10.3390/coatings10090827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAp) and samarium doped hydroxyapatite, Ca10−xSmx(PO4)6(OH)2, xSm = 0.05, (5SmHAp), coatings were prepared by sol-gel process using the dip coating method. The stability of 5SmHAp suspension was evaluated by ultrasound measurements. Fourier transform infrared spectroscopy (FTIR) was used to examine the optical characteristics of HAp and 5SmHAp nanoparticles in suspension and coatings. The FTIR analysis revealed the presence of the functional groups specific to the structure of hydroxyapatite in the 5SmHAp suspensions and coatings. The morphology of 5SmHAp nanoparticles in suspension was evaluated by transmission electron microscopy (TEM). Moreover, scanning electron microscope (SEM) was used to evaluate the morphology of nanoparticle in suspension and the morphology of the surface on the coating. The SEM and TEM studies on 5SmHAp nanoparticles in suspension showed that our samples consist of nanometric particles with elongated morphology. The SEM micrographs of HAp and 5SmHAp coatings pointed out that the coatings are continuous and homogeneous. The surface morphology of the 5SmHAp coatings was also assessed by Atomic Force Microscopy (AFM) studies. The AFM results emphasized that the coatings presented the morphology of a uniformly deposited layer with no cracks and fissures. The crystal structure of 5SmHAp coating was characterized by X-ray diffraction (XRD). The surface composition of 5SmHAp coating was analyzed by X-ray photoelectron spectroscopy (XPS). The XRD and XPS analysis shown that the Sm3+ ions have been incorporated into the 5SmHAp synthesized material. The antifungal properties of the 5SmHAp suspensions and coatings were studied using Candida albicans ATCC 10231 (C. albicans) fungal strains. The quantitative results of the antifungal assay showed that colony forming unity development was inhibited from the early phase of adherence in the case of both suspensions and coatings. Furthermore, the adhesion, cell proliferation and biofilm formation of the C. albicans were also investigated by AFM, SEM and Confocal Laser Scanning Microscopy (CLSM) techniques. The results highlighted that the C. albicans adhesion and cell development was inhibited by the 5SmHAp coatings. Moreover, the data also revealed that the 5SmHAp coatings were effective in stopping the biofilm formation on their surface. The toxicity of the 5SmHap was also investigated in vitro using HeLa cell line.
Collapse
|
14
|
Development of Cerium-Doped Hydroxyapatite Coatings with Antimicrobial Properties for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10060516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibacterial cerium-doped hydroxyapatite (Ce-HAp) layers have been researched sparingly in recent years. The Ce-HAp powder, Ca10−xCex(PO4)6(OH)2 with xCe = 0.05, was obtained by an adapted chemical co-precipitation method at room temperature. The target was prepared using the Ce-HAp (xCe = 0.05) powder sintered in air at 600 °C. The coatings on the Ti substrate were generated in plasma using a radio frequency (RF) magnetron sputtering discharge in an Ar gas flow in a single run. To collect the most complete information regarding the antimicrobial activity of cerium-doped hydroxyapatite with xCe = 0.05, (5Ce-HAp), antimicrobial studies were carried out both on the final suspensions and on the coated surfaces. The target was tested using ultrasound measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), glow-discharge optical emission spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The present study exhibited for the first time results of the homogeneous coatings of hydroxyapatite doped with cerium using a radio frequency magnetron sputtering technique. In addition, this study highlighted for the first time the stability of the cerium-doped hydroxyapatite gels used in the creation of the coating. Ultrasound measurements on the concentrated suspension of 5Ce-HAp showed a good stability compared to double distilled, water which was chosen as the reference fluid. Particles with spherical shape were observed by both TEM and SEM analysis. The broadening of the IR bands in the IR spectrum of the 5Ce-HAp film in comparison with the IR spectrum of the precursor target indicate the formation of interlinked bonds into the layer bulk. XPS analysis revealed that the mixture of Ce3+ and Ce4+ ions in the hydroxyapatite (HAp) structure of the coatings could be due to the deposition process. The surface of 5Ce-HAp coatings was homogenous with particles having a spherical shape. A uniform distribution of all the constituent elements on the surface the 5Ce-HAp layer was revealed. The antimicrobial assays proved that both 5Ce-HAp suspensions and 5Ce-HAp coatings effectively inhibited the development of colony forming units (CFU) for all the tested microbial strains. Moreover, the antimicrobial assays emphasized that the 5Ce-HAp suspensions had a biocide effect against Escherichia coli (E. coli) and Candida albicans (C. albicans) microbial strains after 72 h of incubation.
Collapse
|
15
|
Obtaining and Characterizing Thin Layers of Magnesium Doped Hydroxyapatite by Dip Coating Procedure. COATINGS 2020. [DOI: 10.3390/coatings10060510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A simple dip coating procedure was used to prepare the magnesium doped hydroxyapatite coatings. An adapted co-precipitation method was used in order to obtain a Ca25−xMgx(PO4)6(OH)2, 25MgHAp (xMg = 0.25) suspension for preparing the coatings. The stabilities of 25MgHAp suspensions were evaluated using ultrasound measurements, zeta potential (ZP), and dynamic light scattering (DLS). Using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) information at nanometric resolution regarding the shape and distribution of the 25MgHAp particles in suspension was obtained. The surfaces of obtained layers were evaluated using SEM and atomic force microscopy (AFM) analysis. The antimicrobial evaluation of 25MgHAp suspensions and coatings on various bacterial strains and fungus were realized. The present study presents important results regarding the physico-chemical and antimicrobial studies of the magnesium doped hydroxyapatite suspensions, as well as the coatings. The studies have shown that magnesium doped hydroxyapatite suspensions prepared with xMg = 0.25 presented a good stability and relevant antimicrobial properties. The coatings made using 25MgHAp suspension were homogeneous and showed remarkable antimicrobial properties. Also, it was observed that the layer realized has antimicrobial properties very close to those of the suspension. Both samples of the 25MgHAp suspensions and coatings have very good biocompatible properties.
Collapse
|