1
|
Reiß F, Kiefer N, Reiß P, Kalkhof S, Noll M. Facade eluates affect active and total soil microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125242. [PMID: 39528135 DOI: 10.1016/j.envpol.2024.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The application of biocides in building materials has become a prevalent practice to mitigate the growth of microorganisms such as algae, fungi, and bacteria on the façades. These can leach out from the material and reach the nearby soil environment. This study aimed to characterize the effect of façade eluates generated within different leaching experiments on total and metabolic active soil microbial community composition and functions. Façade eluates were produced by immersion testing DIN EN 16105 and a natural weathering experiment. Afterward, soil microcosms were treated with the respective façade eluate and incubated for 29 days. Subsequently, the active and total soil microbial community compositions were investigated. Fungal internal transcribed spacer region gene and bacterial 16S rRNA gene were sequenced for active (bromodeoxyuridine labeled DNA) microbial community and total community. Façade eluates reduced total bacterial and fungal gene copy numbers. Overall, active bacterial and fungal richness was reduced and altered in community composition in comparison to the total richness and composition, respectively. Façade eluates retrieved of façade samples without biocides did alter the soil microbial communities to the same extent as façade eluates with biocides. Additionally, members of the active microbiome that benefit from the presence of façade eluates and omitted ones could be identified. Our result demonstrated that façade eluates affect active and total soil microbial community composition and function regardless of the leaching procedure and biocides addition.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Nadine Kiefer
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany; Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Pascal Reiß
- Physical Chemistry IV, Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany; Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Leipzig, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
3
|
Sanjurjo-Sánchez J, Alves C, Freire-Lista DM. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168846. [PMID: 38036142 DOI: 10.1016/j.scitotenv.2023.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Biominerals deposition processes, also called biomineralisation, are intimately related to biodeterioration on stone surfaces. They include complex processes not always completely well understood. The study of biominerals implies the identification of organisms, their molecular mechanisms, and organism/rock/atmosphere interactions. Sampling restrictions of monument stones difficult the biominerals study and the in situ demonstrating of biodeterioration processes. Multidisciplinary works are required to understand the whole process. Thus, studies in heritage buildings have taken advantage of previous knowledge acquired thanks to laboratory experiments, investigations carried out on rock outcrops and within caves from some years ago. With the extrapolation of such knowledge to heritage buildings and the advances in laboratory techniques, there has been a huge increase of knowledge regarding biomineralisation and biodeterioration processes in stone monuments during the last 20 years. These advances have opened new debates about the implications on conservation interventions, and the organism's role in stone conservation and decay. This is a review of the existing studies of biominerals formation, biodeterioration on laboratory experiments, rocks, caves, and their application to building stones of monuments.
Collapse
Affiliation(s)
| | - Carlos Alves
- LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020) and Earth Sciences Department/School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Freire-Lista
- Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências da Vida e do Ambiente, Quinta dos Prados, 5000-801 Vila Real, Portugal; Centro de Geociências, Universidade de Coimbra, Portugal
| |
Collapse
|
4
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
5
|
Villar-dePablo M, Ascaso C, Rodríguez-Pérez E, Urizal M, Wierzchos J, Pérez-Ortega S, de Los Ríos A. Innovative approaches to accurately assess the effectiveness of biocide-based treatments to fight biodeterioration of Cultural Heritage monuments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165318. [PMID: 37422225 DOI: 10.1016/j.scitotenv.2023.165318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The development of diagnostic methods to accurately assess the effects of treatments on lithobiont colonization remains a challenge for the conservation of Cultural Heritage monuments. In this study, we tested the efficacy of biocide-based treatments on microbial colonization of a dolostone quarry, in the short and long-term, using a dual analytical strategy. We applied a metabarcoding approach to characterize fungal and bacterial communities over time, integrated with microscopy techniques to analyze the interactions of microorganisms with the substrate and evaluate the effectiveness. These communities were dominated by the bacterial phyla Actinobacteriota, Proteobacteria and Cyanobacteria, and the fungal order Verrucariales, which include taxa previously reported as biodeteriogenic agents and observed here associated with biodeterioration processes. Following the treatments, changes over time in the abundance profiles depend on taxa. While Cyanobacteriales, Cytophagales and Verrucariales decreased in abundance, other groups, such as Solirubrobacteriales, Thermomicrobiales and Pleosporales increased. These patterns could be related not only to the specific effects of the biocide on the different taxa, but also to different recolonization abilities of those organisms. The different susceptibility to treatments could be associated with the inherent cellular properties of different taxa, but differences in biocide penetration to endolithic microhabitats could be involved. Our results demonstrate the importance of both removing epilithic colonization and applying biocides to act against endolithic forms. Recolonization processes could also explain some of the taxon-dependent responses, especially in the long-term. Taxa showing resistance, and those benefiting from nutrient accumulation in the form of cellular debris following treatments, may have an advantage in colonizing treated areas, pointing to the need for long-term monitoring of a wide range of taxa. This study highlights the potential utility of combining metabarcoding and microscopy to analyze the effects of treatments and design appropriate strategies to combat biodeterioration and establish preventive conservation protocols.
Collapse
Affiliation(s)
- Mar Villar-dePablo
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Carmen Ascaso
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Esther Rodríguez-Pérez
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | | | - Jacek Wierzchos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain
| | - Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (CSIC), Serrano 115 dpdo., E-28006 Madrid, Spain.
| |
Collapse
|
6
|
Geweely NS. New frontiers review of some recent conservation techniques of organic and inorganic archaeological artefacts against microbial deterioration. Front Microbiol 2023; 14:1146582. [PMID: 37007519 PMCID: PMC10060858 DOI: 10.3389/fmicb.2023.1146582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The information on the advances and technology of some recent conservation methods (2020–2023) of organic and inorganic archaeological objects against microbial deterioration is recorded. An outline of comparative new protective methods for conserving plant-origin organic artefacts {Fibers (manuscripts, textile) and wood}, animal-origin organic artefacts (painting, parchment and mummies) and inorganic stone artefacts were investigated. The work not only contributes to the development of safe revolutionary ways for more efficient safe conservation of items of historical and cultural worth but also serves as a significant diagnostic signature for detecting the sorts of microbial identification and incidents in antiques. Biological technologies (environmentally friendly green biocides) are the most used recent, efficient and safe strategy acceptable as alternatives to stop microbial deterioration and prevent any potential interactions between the biological agent and the artefacts. Also, a synergistic effect of combining natural biocides with mechanical cleaning or chemical treatments was suggested. The recommended exploration techniques should be considered for future applications.
Collapse
|
7
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
8
|
He J, Zhang N, Shen X, Muhammad A, Shao Y. Deciphering environmental resistome and mobilome risks on the stone monument: A reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156443. [PMID: 35660621 DOI: 10.1016/j.scitotenv.2022.156443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) in the environment has attracted increasing attention as an emerging global threat to public health. Stone is an essential ecosystem in nature and also an important material for human society, having architectural and aesthetic values. However, little is known about the AMR in stone ecosystems, particularly in the stone monument, where antimicrobials are often applied against biodeterioration. Here, we provide the first detailed metagenomic study of AMR genes across different types of biodeteriorated stone monuments, which revealed abundant and diverse AMR genes conferring resistance to drugs (antibiotics), biocides, and metals. Totally, 132 AMR subtypes belonging to 27 AMR types were detected including copper-, rifampin-, and aminocoumarins-resistance genes, of which diversity was mainly explained by the spatial turnover (replacement of genes between samples) rather than nestedness (loss of nested genes between samples). Source track analysis confirms that stone resistomes are likely driven by anthropogenic activities across stone heritage areas. We also detected various mobile genetic elements (namely mobilome, e.g., prophages, plasmids, and insertion sequences) that could accelerate replication and horizontal transfer of AMR genes. Host-tracking analysis further identified multiple biodeterioration-related bacterial genera such as Pseudonocardia, Sphingmonas, and Streptomyces as the major hosts of resistome. Taken together, these findings highlight that stone microbiota is one of the natural reservoirs of antimicrobial-resistant hazards, and the diverse resistome and mobilome carried by active biodeteriogens may improve their adaptation on stone and even deactivate the antimicrobials applied against biodeterioration. This enhanced knowledge may also provide novel and specific avenues for environmental management and stone heritage protection.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Nan Zhang
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Abrar Muhammad
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Yongqi Shao
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
9
|
Pargoletti E, Comite V, Fermo P, Sabatini V, Annunziata L, Ortenzi MA, Farina H, Cappelletti G. Calcitic-based stones protection by a low-fluorine modified methacrylic coating. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29455-29466. [PMID: 34312747 PMCID: PMC9001578 DOI: 10.1007/s11356-021-15515-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 06/01/2023]
Abstract
Atmospheric pollutants, such as NOx, SO2, and particulate matter, together with water percolation inside the stone pores, represent the main causes of cultural heritage decay. In order to avoid these undesired phenomena, the application of protective coatings represents a reliable solution. In this context, the present study focused on the synthesis of low-fluorine content methacrylic-based (MMA) polymeric resins characterized by seven F atoms (namely F7 monomer) in the lateral chains. Four different percentages (1.0, 2.5, 5.0, and 10.0%) of the present monomer were adopted to obtain a final polymeric structure showing the desired hydrophobicity, processability, and structural and thermal stability (even after accelerated UV aging tests). MMA_F7(1.0) seemed to be the optimal one; therefore, it was further applied onto Candoglia marble. Specifically, the treated substrates showed good surface hydrophobicity, water repellency, and water vapor transpirability. No color variation was observed even after a 1.5-year exposure in a real polluted environment (Monza Cathedral). Interestingly, the application of this coating hindered the atmospheric nitrates penetration inside the stones and, at the same time, it limited the sulfates (gypsum) formation, thus revealing a very promising marbles protection resin.
Collapse
Affiliation(s)
- Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Valeria Comite
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Valentina Sabatini
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Luisa Annunziata
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Hermes Farina
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
10
|
The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020; 8:microorganisms8101542. [PMID: 33036341 PMCID: PMC7600914 DOI: 10.3390/microorganisms8101542] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 11/24/2022] Open
Abstract
The microbial deterioration of cultural heritage includes physical and chemical damage as well as aesthetic alteration. With the technological advancement, a plethora of techniques for removing unwanted microorganisms have opened up new opportunities for microbiologists and conservators. This article reviews the most applied, up-to-date, and sustainable techniques developed for the control of cultural heritage microbial deterioration presenting noteworthy case studies. These techniques include chemical methods, i.e., traditional biocides and nanoparticles; physical methods, such as mechanical removal, UV irradiation, gamma radiation, laser cleaning, heat shocking, microwaves, and dry ice treatment; and biological methods, such as natural molecules with biocidal activity, enzymes, and microorganisms. The application of control systems requires the comprehension of their behavior toward the unwanted microorganisms and possible interactions with the heritage materials. This overview shows also the control methods drawbacks for the purpose of creating awareness in selecting the most suitable technique or combination of techniques.
Collapse
|