1
|
Morriss CE, Cheung CK, Nunn E, Parmeggiani F, Powell NA, Kimber RL, Haigh SJ, Lloyd JR. Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311016. [PMID: 38461530 DOI: 10.1002/smll.202311016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan Morriss
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Casey K Cheung
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elliot Nunn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy
| | | | - Richard L Kimber
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Coelho JF, Filho NGP, Gutierrez IM, Godoi CM, Gomes PVR, Zambiazi PJ, de Souza RFB, Neto AO. Methane-to-methanol conversion and power co-generation on palladium: nickel supported on antimony tin oxide catalysts in a polymeric electrolyte reactor-fuel cell (PER-FC). RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Romdhane RB, Atoui D, Ktata N, Dali S, Moussaoui Y, Salem RB. Pd‐supported on Locust bean gum as reusable green catalyst for Heck, Sonogashira coupling reactions and 4‐nitroaniline reduction under ultrasound irradiation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rabeb Ben Romdhane
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Dhieb Atoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Nahed Ktata
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Souad Dali
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes University of Gabes Tunisia
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Tunisia
| | - Ridha Ben Salem
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| |
Collapse
|
4
|
Wetzel O, Prymak O, Loza K, Gumbiowski N, Heggen M, Bayer P, Beuck C, Weidenthaler C, Epple M. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorg Chem 2022; 61:5133-5147. [PMID: 35285631 DOI: 10.1021/acs.inorgchem.2c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
5
|
Krishnaveni T, Kaveri MV, Kadirvelu K. The first PdO nanoparticle catalyzed one pot synthesis of propargylamine through A 3-coupling of an aldehyde, alkyne and amine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium(ii) oxide (PdO) nanoparticles (Nps) were prepared by an environmentally benign hydrothermal method with a new capping agent quercetin.
Collapse
Affiliation(s)
- T. Krishnaveni
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - M. V. Kaveri
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - K. Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore – 641046, India
| |
Collapse
|
6
|
Potential Use of Wollastonite as a Filler in UF Resin Based Medium-Density Fiberboard (MDF). Polymers (Basel) 2020; 12:polym12071435. [PMID: 32605051 PMCID: PMC7408164 DOI: 10.3390/polym12071435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
Urea-formaldehyde (UF) resins are primary petroleum-based, increasing their potential environmental footprint. Identifying additives to reduce the total amount of resin needed without adversely affecting the panel properties could reduce these impacts. Wollastonite is a mineral containing calcium and silica that has been used as an additive in a variety of materials and may be useful as a resin extender. Nanoscale wollastonite has been shown to enhance the panel properties but is costly. Micron-scale wollastonite may be a less costly alternative. Medium-density fiberboards were produced by blending a hardwood furnish with UF alone, micron-sized wollastonite alone, or a 9:1 ratio of UF to wollastonite. Panels containing of only wollastonite had poor properties, but the properties of panels with 9:1 UF/wollastonite were similar to the UF-alone panels, except for the internal bond strength. The results suggest that small amounts of micron-sized wollastonite could serve as a resin extender. Further studies are suggested to determine if the micron-sized material has similar positive effects on the resin curing rate.
Collapse
|