1
|
Gavrila AM, Diacon A, Iordache TV, Rotariu T, Ionita M, Toader G. Hazardous Materials from Threats to Safety: Molecularly Imprinted Polymers as Versatile Safeguarding Platforms. Polymers (Basel) 2024; 16:2699. [PMID: 39408411 PMCID: PMC11478541 DOI: 10.3390/polym16192699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Hazards associated with highly dangerous pollutants/contaminants in water, air, and land resources, as well as food, are serious threats to public health and the environment. Thus, it is imperative to detect or decontaminate, as risk-control strategies, the possible harmful substances sensitively and efficiently. In this context, due to their capacity to be specifically designed for various types of hazardous compounds, the synthesis and use of molecularly imprinted polymers (MIPs) have become widespread. By molecular imprinting, affinity sites with complementary shape, size, and functionality can be created for any template molecule. MIPs' unique functions in response to external factors have attracted researchers to develop a broad range of MIP-based sensors with increased sensitivity, specificity, and selectivity of the recognition element toward target hazardous compounds. Therefore, this paper comprehensively reviews the very recent progress of MIPs and smart polymer applications for sensing or decontamination of hazardous compounds (e.g., drugs, explosives, and biological or chemical agents) in various fields from 2020 to 2024, providing researchers with a rapid tool for investigating the latest research status.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Tanta-Verona Iordache
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest (UNSTPB), Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| |
Collapse
|
2
|
Cowen T, Cheffena M. Template Imprinting Versus Porogen Imprinting of Small Molecules: A Review of Molecularly Imprinted Polymers in Gas Sensing. Int J Mol Sci 2022; 23:ijms23179642. [PMID: 36077047 PMCID: PMC9455763 DOI: 10.3390/ijms23179642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The selective sensing of gaseous target molecules is a challenge to analytical chemistry. Selectivity may be achieved in liquids by several different methods, but many of these are not suitable for gas-phase analysis. In this review, we will focus on molecular imprinting and its application in selective binding of volatile organic compounds and atmospheric pollutants in the gas phase. The vast majority of indexed publications describing molecularly imprinted polymers for gas sensors and vapour monitors have been analysed and categorised. Specific attention was then given to sensitivity, selectivity, and the challenges of imprinting these small volatile compounds. A distinction was made between porogen (solvent) imprinting and template imprinting for the discussion of different synthetic techniques, and the suitability of each to different applications. We conclude that porogen imprinting, synthesis in an excess of template, has great potential in gas capture technology and possibly in tandem with more typical template imprinting, but that the latter generally remains preferable for selective and sensitive detection of gaseous molecules. More generally, it is concluded that gas-phase applications of MIPs are an established science, capable of great selectivity and parts-per-trillion sensitivity. Improvements in the fields are likely to emerge by deviating from standards developed for MIP in liquids, but original methodologies generating exceptional results are already present in the literature.
Collapse
|
3
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
5
|
Wang J. A Simple, Rapid and Low-cost 3-Aminopropyltriethoxysilane (APTES)-based Surface Plasmon Resonance Sensor for TNT Explosive Detection. ANAL SCI 2021; 37:1029-1032. [PMID: 33191367 DOI: 10.2116/analsci.20n028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a simple, one-step organic molecule 3-aminopropyltriethoxysilane (APTES) functionalized surface plasmon resonance (SPR) sensor was developed. APTES as an organic ligand immobilized on the SPR sensor chip was used to form the Meisenheimer complex with 2,4,6-trinitrotoluene (TNT). The results of using the APTES-based SPR sensor chip show a highly selective and sensitive (ppb level: parts per billion) detection of TNT explosive. The sensor is expected to have potential for application in the fast screening of the TNT explosive.
Collapse
Affiliation(s)
- Jin Wang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
| |
Collapse
|
6
|
Toader G, Diacon A, Rusen E, Rizea F, Teodorescu M, Stanescu PO, Damian C, Rotariu A, Trana E, Bucur F, Ginghina R. A Facile Synthesis Route of Hybrid Polyurea-Polyurethane-MWCNTs Nanocomposite Coatings for Ballistic Protection and Experimental Testing in Dynamic Regime. Polymers (Basel) 2021; 13:polym13101618. [PMID: 34067679 PMCID: PMC8156591 DOI: 10.3390/polym13101618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
This study describes a simple, practical, inexpensive, improved, and efficient novel method for obtaining polyurea-polyurethane-multiwall carbon nanotubes (MWCNTs) nanocomposites with enhanced mechanical properties, and their experimental testing in a dynamic regime. SEM and micro-CT investigations validated the homogeneity of the nanocomposite films and uniform dispersion of the nanofiller inside the polymeric matrix. The experimental measurements (TGA, DSC, DMA, and tensile tests) revealed improved thermal and mechanical properties of these new materials. To demonstrate that these nanocomposites are suitable for ballistic protection, impact tests were performed on aluminum plates coated with the polyurea-polyurethane MWCNTs nanocomposites, using a Hopkinson bar set-up. The experimental testing in the dynamic regime of the polyurea- polyurethane-coated aluminum plates confirmed that the nanocomposite layers allow the metal plate to maintain its integrity at a maximum force value that is almost 200% higher than for the uncoated metallic specimens.
Collapse
Affiliation(s)
- Gabriela Toader
- Faculty of Weapon Systems Engineering and Mechatronics, Military Technical Academy, 39-49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.R.); (E.T.); (F.B.)
| | - Aurel Diacon
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
- Correspondence:
| | - Edina Rusen
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
| | - Florica Rizea
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
| | - Paul O. Stanescu
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
| | - Celina Damian
- Department of Bioresources and Polymer Science, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.R.); (F.R.); (M.T.); (P.O.S.); (C.D.)
| | - Adrian Rotariu
- Faculty of Weapon Systems Engineering and Mechatronics, Military Technical Academy, 39-49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.R.); (E.T.); (F.B.)
| | - Eugen Trana
- Faculty of Weapon Systems Engineering and Mechatronics, Military Technical Academy, 39-49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.R.); (E.T.); (F.B.)
| | - Florina Bucur
- Faculty of Weapon Systems Engineering and Mechatronics, Military Technical Academy, 39-49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.R.); (E.T.); (F.B.)
| | - Raluca Ginghina
- Scientific Research Center for CBRN Defense and Ecology, 225 Soseaua Oltenitei, 041327 Bucharest, Romania;
| |
Collapse
|
7
|
Role of Functional Monomers upon the Properties of Bisphenol A Molecularly Imprinted Silica Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, two types of bisphenol A molecularly imprinted films (BPA-MIP) were successfully prepared via sol-gel derived methods using two different organosilane functional monomers N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO-T) or (3-mercaptopropyl)trimethoxysilane (MPTES). The physical-chemical characterization of films, in terms of morphology, structure, thermal analysis, and optical features, suggested that thinner films with a homogenous porous structure were more likely to retain BPA molecules. The MIP films revealed the rapid and quantitative adsorption of BPA, registering the most specific binding in the first five minutes of contact with the BPA-MIP film. Silica films were effectively regenerated for further usage for at least five times, demonstrating their high stability and reusability. Even if the performance of films for BPA uptake dropped dramatically after the third adsorption/reconditioning cycle, this synthesis method for BPA-MIP films has proven to be a reliable and cheap way to prepare sensitive films with potential application for re-usable optical sensors.
Collapse
|