1
|
Li L, Li X, McClements DJ, Jin Z, Ji H, Qiu C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39722469 DOI: 10.1080/10408398.2024.2439040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage. The degradation products of EOs can be toxic and may not be able to fully exert their biological activity, which limits their application. Typically, these challenges can be overcome by encapsulating the essential oil in an appropriate colloid delivery system. This article begins by reviewing the sources, extraction, and activity mechanisms of EOs, and then highlights plant-based encapsulation technologies that can be used to enhance their efficacy. Finally, the potential applications of plant essential oil encapsulation system are discussed.
Collapse
Affiliation(s)
- Lecheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Khobragade D, Parshuramkar P, Agrawal S, Ingale R, Potbhare M. Deciphering the role of plasticizers and solvent systems in hydrophobic polymer coating on hydrophilic core. Heliyon 2024; 10:e37938. [PMID: 39416820 PMCID: PMC11481617 DOI: 10.1016/j.heliyon.2024.e37938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The type of plasticizer and the choice of solvent or co-solvents used for coating of a hydrophilic core can greatly impact the permeability, porosity, and mechanical strength of the polymer film. Although, Ethylcellulose (EC) is an old polymer, it is a polymer of choice for modifying the drug release due to its inherent properties. The ability of polymers like EC alone to form a diffusion-controlling membrane with good mechanical properties is limited. To modulate the drug release as per the desired profile and modify the film properties, ethylcellulose is often used with hydrophilic hypromellose (HPMC) along with plasticizers. The main focus of the current study was the identification of an appropriate solvent system and plasticizer for the ethylcellulose-hypromellose polymer combination. The study evaluated the coating solution properties, the feasibility and efficiency of the process, the physical attributes of the tablet, the surface properties of the polymer film, the in-vitro drug release and behavior, and the impact of curing time on surface properties and drug release, among other factors. The isopropyl alcohol-water mixture (9:1) produced a homogeneous film in comparison to films produced by other solvents. Although both hydrophilic and hydrophobic plasticizers produce homogeneous films, hydrophilic plasticizers have a higher rate of drug diffusion than hydrophobic plasticizers. During the tablet curing and stability study, the drug release from the polymeric film coating with triethyl citrate decreased moderately and with polyethylene glycol decreased significantly. The presence of hydrophobic plasticizers, viz., dibutyl sebacate and acetyl tributyl citrate, in the polymeric film coating does not impact drug release. For the combination of ethylcellulose and hypromellose, it was found that a mixture of isopropyl alcohol and water (9:1) worked better as a solvent for coating solutions, and hydrophobic plasticizers lower the risk associated with coating ethylcellulose and hypromellose together.
Collapse
Affiliation(s)
- Deepak Khobragade
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, Maharashtra, 442003, India
| | - Pramod Parshuramkar
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, Maharashtra, 442003, India
| | - Surendra Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, Maharashtra, 442003, India
| | - Rahul Ingale
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, Maharashtra, 442003, India
| | - Mrunali Potbhare
- Swami samarth College of Pharmacy, Dhamangaon, Maharashtra, India
| |
Collapse
|
3
|
Priyadarshi R, El-Araby A, Rhim JW. Chitosan-based sustainable packaging and coating technologies for strawberry preservation: A review. Int J Biol Macromol 2024; 278:134859. [PMID: 39163966 DOI: 10.1016/j.ijbiomac.2024.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
4
|
Vidal C, Lopez-Polo J, Osorio FA. Physical Properties of Cellulose Derivative-Based Edible Films Elaborated with Liposomes Encapsulating Grape Seed Tannins. Antioxidants (Basel) 2024; 13:989. [PMID: 39199233 PMCID: PMC11351243 DOI: 10.3390/antiox13080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
Collapse
Affiliation(s)
- Constanza Vidal
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Johana Lopez-Polo
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
5
|
de Oliveira TS, Costa AMM, Cabral LMC, Freitas-Silva O, Tonon RV. Physical and biological properties of alginate-based cinnamon essential oil nanoemulsions: Study of two different production strategies. Int J Biol Macromol 2024; 275:133627. [PMID: 38964684 DOI: 10.1016/j.ijbiomac.2024.133627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Nanoemulsions are a promising alternative for essential oil incorporation into active coatings. The influence of the preparation steps order on nanoemulsions' physical properties is still little explored. This study aimed to analyze the effect of the sequence of preparation steps and of the oil and polymer concentration on the stability, physical properties, and antifungal activity of alginate-based cinnamon essential oil nanoemulsions. The nanoemulsions were produced by two strategies: (I) preparation directly into an alginate solution (Ultra-Turrax at 10,000 rpm for 5 min + Ultrasound 150 W for 3 min); and (II) preparation in water (Ultra-Turrax at 10,000 rpm for 5 min + Ultrasound 150 W for 3 min) followed by homogenization with a sodium alginate solution (Ultra-Turrax at 10,000 rpm for 1, 3 or 5 min). The nanoemulsion prepared by the second strategy showed better stability, physical properties, and antifungal activity. In general, the presence of alginate hindered the cavitation effects of ultrasound, leading to the increase of droplets size and consequently affecting emulsions stability, turbidity, and antifungal properties.
Collapse
Affiliation(s)
- Tamires Sousa de Oliveira
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - André Mesquita Magalhães Costa
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Lourdes Maria Corrêa Cabral
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
| | | | - Renata Valeriano Tonon
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Ivanov Y, Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms 2024; 12:1378. [PMID: 39065146 PMCID: PMC11279212 DOI: 10.3390/microorganisms12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of antimicrobial food packaging is a very important and current goal, but it still difficult to implement in practice. Reducing microbial contamination and preserving food quality are very important tasks for food manufacturers as the use of antimicrobial packaging can preserve the health of consumers. On the other hand, the difficulty of degrading packaging materials, leading to environmental pollution, is also an important problem. These problems can be solved by using biodegradable biopolymers and antimicrobial agents in the production of food packaging. Very suitable antimicrobial agents are grape seed and skin extracts as they have high antioxidant and antimicrobial capacity and are obtained from grape pomace, a waste product of winemaking. The present review presents the valuable bioactive compounds contained in grape seeds and skins, the methods used to obtain the extracts, and their antimicrobial and antioxidant properties. Then, the application of grape seed and skin extracts for the production of antimicrobial packaging is reviewed. Emphasis is placed on antimicrobial packaging based on various biopolymers. Special attention is also paid to the application of the extract of grape skins to obtain intelligent indicator packages for the continuous monitoring of the freshness and quality of foods. The focus is mainly placed on the antimicrobial properties of the packaging against different types of microorganisms and their applications for food packaging. The presented data prove the good potential of grape seed and skin extracts to be used as active agents in the preparation of antimicrobial food packaging.
Collapse
Affiliation(s)
| | - Tzonka Godjevargova
- Department Biotechnology, University “prof. d-r A. Zlatarov”, 8010 Burgas, Bulgaria;
| |
Collapse
|
7
|
Kurek M, Ščetar M, Nuskol M, Janči T, Tanksoić M, Klepac D, Čakić Semenčić M, Galić K. Assessment of Chitosan/Gelatin Blend Enriched with Natural Antioxidants for Antioxidant Packaging of Fish Oil. Antioxidants (Basel) 2024; 13:707. [PMID: 38929146 PMCID: PMC11200781 DOI: 10.3390/antiox13060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In this research, bio-based films were developed using polyelectrolyte complexes derived from chitosan and gelatin for packaging fish oil. To further enhance the antioxidant functionality, the films were enriched with gallic acid and orange essential oils, either individually or in combination. Initially, the films were characterized for their physico-chemical, optical, surface, and barrier properties. Subsequently, the phenolic compounds and antioxidant capacity of the films were assessed. Finally, the films were tested as antioxidant cover lids for packaging fish oil, which was then stored at ambient temperature for 30 days, with periodical monitoring of oil oxidation parameters. This study revealed that the inclusion of gallic acid-induced possible crosslinking effects, as evidenced by changes in moisture content, solubility, and liquid absorption. Additionally, shifts in the FTIR spectral bands suggested the binding of gallic acid and/or phenols in orange essential oils to CSGEL polymer chains, with noticeable alterations in film coloration. Notably, films containing gallic acid exhibited enhanced UV barrier properties crucial for preserving UV-degradable food compounds. Moreover, formulations with gallic acid demonstrated decreased water vapor permeability, while samples containing orange essential oils had lower CO2 permeability levels. Importantly, formulations containing both gallic acid and essential oils showed a synergistic effect and a significant antioxidant capacity, with remarkable DPPH inhibition rates of up to 88%. During the 30-day storage period, fish oil experienced progressive oxidation, as indicated by an increase in the K232 value in control samples. However, films incorporating gallic acid or orange essential oils as active antioxidants, even used as indirect food contact, effectively delayed the oxidation, highlighting their protective benefits. This study underscores the potential of sustainable bio-based films as natural antioxidant packaging for edible fish oil or fresh fish, offering a promising tool for enhancing food preservation while reducing its waste.
Collapse
Affiliation(s)
- Mia Kurek
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Mario Ščetar
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Marko Nuskol
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Tibor Janči
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Marija Tanksoić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Damir Klepac
- Centre for Micro- and Nanosciences and Technologies, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia;
| | - Mojca Čakić Semenčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| | - Kata Galić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia; (M.Š.); (M.N.); (T.J.); (M.T.); (M.Č.S.); (K.G.)
| |
Collapse
|
8
|
Rammal M, Khreiss S, Badran A, Mezher M, Bechelany M, Haidar C, Khalil MI, Baydoun E, El-Dakdouki MH. Antibacterial and Antifungal Activities of Cimbopogon winterianus and Origanum syriacum Extracts and Essential Oils against Uropathogenic Bacteria and Foodborne Fungal Isolates. Foods 2024; 13:1684. [PMID: 38890913 PMCID: PMC11171924 DOI: 10.3390/foods13111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on testing the antibacterial and antifungal activity of Origanum syriacum (O. syriacum) and Cimbopogon winterianus (C. winterianus) extracts and their essential oils (EOs). The bacteria were isolated from urine samples and identified by a VITEK assay, and the fungi were isolated from spoiled food samples and further identified by MALDI-TOF. The susceptibility of the microbial isolates was assessed by determining the bacteriostatic and bactericidal/fungicidal effects by the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) broth microdilution assay and time-kill test. The antibiofilm activities were assessed by the antibiofilm screening assays. The bacterial isolates included three Gram-negative isolates (Escherichia coli, Klebsiella pneumonia, and Citrobacter freundii) and two Gram-positive isolates (Staphylococcus aureus and Streptococcus intermedius). The fungal isolates included Candida albicans and Aspergillus niger. The O. syriacum and C. winterianus extracts exhibited bacteriostatic and fungistatic activities (MIC 1.25-2.5 mg/mL for the bacterial isolates and 2.5-5 mg/mL for the fungal isolates). However, their EOs exhibited bactericidal (MBC 5-20%) and fungicidal (MFC 1.25-10%) activities, meaning that the EOs had a better antimicrobial potential than the extracts. The antibiofilm activities of the mentioned extracts and their EOs were relatively weak. The O. syriacum extract inhibited S. aureus, S. intermedius, and K. pneumonia biofilms at a concentration of 0.3125 mg/mL and C. albicans and A. niger biofilms at 0.625 mg/mL. No antibiofilm activity was recorded for C. winterianus extract. In addition, the packaging of grapes with C. winterianus extract preserved them for about 40 days. The results reflect the significant antimicrobial activity of O. syriacum and C. winterianus extracts and their EOs, thus suggesting their potential in food packaging and preservation.
Collapse
Affiliation(s)
- Marwa Rammal
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Salam Khreiss
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343, Jordan;
| | - Malak Mezher
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugene Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Chaden Haidar
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut 11072020, Lebanon;
| | - Mohammad H. El-Dakdouki
- Department of Chemistry, Faculty of Science, Beirut Arab University, Riad El Solh, P.O. Box 11-5020, Beirut 11072809, Lebanon
| |
Collapse
|
9
|
Ciurzyńska A, Janowicz M, Karwacka M, Nowacka M, Galus S. Development and Characteristics of Protein Edible Film Derived from Pork Gelatin and Beef Broth. Polymers (Basel) 2024; 16:1009. [PMID: 38611267 PMCID: PMC11013980 DOI: 10.3390/polym16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this work was to develop edible films derived from gelatin and beef broth and to analyze the physical properties of the output products. The presented research is important from the point of view of searching for food packaging solutions that may replace traditionally used plastic packaging. This study's conceptual framework is in line with the trend of sustainable development and zero waste. This study was conducted to develop a recipe for edible films derived from beef gelatin with gelatin concentrations at 4%, 8%, and 12% enriched with additions of beef broth in amounts of 25, 50, 75, and 100%. Selected physical properties of the output edible films were examined in terms of thickness, swelling in water, opacity, water content, water solubility, structure, and mechanical properties. The conducted research made it plausible to conclude that the addition of broth has a positive effect on the extensibility of the edible films and the other physical properties under consideration, especially on decreasing the film thickness, which was found to vary between 50.2 and 191.6 µm. When gelatin and broth were added at low concentrations, the tensile strength of the films increased, and subsequently decreased; however, an opposite effect was observed for elongation at break. The increased broth concentration caused the film opacity to increase from 0.39 to 4.54 A/mm and from 0.18 to 1.04 A/mm with gelatin concentrations of 4% and 12%, respectively. The water solubility of the gelatin films decreased as a result of the broth addition. However, it was noticed that increasing the content of broth caused the water solubility to increase in the tested films. The mere presence of broth in the gelatin films changed the microstructure of the films and also made them thinner.
Collapse
Affiliation(s)
- Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.J.); (M.K.); (S.G.)
| | | | | | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.J.); (M.K.); (S.G.)
| | | |
Collapse
|
10
|
Wang K, Li W, Wu L, Li Y, Li H. Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@zein nanoparticles for active food packaging. Int J Biol Macromol 2024; 261:129586. [PMID: 38266856 DOI: 10.1016/j.ijbiomac.2024.129586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In this study, zein-loaded cinnamaldehyde (Cin@ZN) nanoparticles were incorporated into Chitosan (CS)/dialdehyde carboxymethyl cellulose (DCMC) matrix to fabricate the active food packaging materials possessing outstanding antioxidant and antibacterial properties. The research investigated how varying levels of Cin@ZN nanoparticles affected the morphology, microstructure, physicochemical properties of CS/DCMC composite films. The inclusion of Cin@ZN could significantly improve the mechanical strength, reduce the water vapor and oxygen permeability of CS/DCMC composite films and endow films with UV-light blocking properties. It's worth noting that the antibacterial and antioxidant capacities of CS/DCMC films had an astonishing enhancement with Cin@ZN blending, in which ABTS scavenging ratio of the composite films (100 mg) with different Cin@ZN contents reached >90 %. Furthermore, CS/DCMC/Cin@ZN 35 % composite film has the ability to efficiently protect strawberries from microbial damage and decelerate the spoilage rate of strawberries under ambient condition. Consequently, the CS/DCMC/Cin@ZN composite film can be applied as packaging material to extend the lifespan of fruits.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linhuanyi Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
11
|
Petraru A, Amariei S. A Novel Approach about Edible Packaging Materials Based on Oilcakes-A Review. Polymers (Basel) 2023; 15:3431. [PMID: 37631488 PMCID: PMC10459708 DOI: 10.3390/polym15163431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the growing global population and subsequent environment degradation, as well as changes in the climate, changing consumers' dietary habits is necessary to create strategies for the most efficient use of natural resources to eliminate waste in the food supply chain. The packaging of food is essential to preserve the food's properties, extend its shelf life and offer nutritional information. Food products are packaged in various materials of which the most used are plastics, but they have a negative impact on the environment. Various efforts have been made to address this situation, but unfortunately, this includes recycling rather than replacing them with sustainable solutions. There is a trend toward edible packaging materials with more additional functions (antioxidant, antimicrobial and nutritional properties). Edible packaging is also a sustainable solution to avoid food waste and environment pollution. Oilcakes are the principal by-products obtained from the oil extraction process. These by-products are currently underused as animal feed, landfilling or compost. Because they contain large amounts of valuable compounds and are low-cost ingredients, they can be used to produce materials suitable for food packaging. This review covers the recent developments in oilcake-based packaging materials. Special emphasis is placed on the study of materials and technologies that can be used to make edible film in order to research the most suitable ways of developing oilcake-based film that can be consumed simultaneously with the product. These types of materials do not exist on the market.
Collapse
Affiliation(s)
- Ancuţa Petraru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
12
|
Dutta D, Sit N. Application of natural extracts as active ingredient in biopolymer based packaging systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1888-1902. [PMID: 35698604 PMCID: PMC9177344 DOI: 10.1007/s13197-022-05474-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022]
Abstract
Active packaging systems come under novel techniques and are creating demands in food packaging aspects. They are specially designed for food products where shelf life is a key driving factor. Their wide range of functionality preserves the color, texture, smell, and taste of the food item retaining their freshness and edibility for longer than any other methods available on market. An active ingredient in packaging systems enables efficient consumable quality which resulted in reduced complaints from consumers. However, techniques must be inexpensive and environment-friendly. The use of biodegradable packaging systems reinforced by exploiting natural compounds forms the latest trend to attract consumer demand in substituting synthetic preservatives in foods that can protect against food spoilage. Natural extracts have gained commercial importance in active packaging nowadays for the delivery of safe and high-quality foods that are being employed in both fresh and processed produce. Development and use of innovative active packaging systems in varied forms are expected to increase in the future for food safety, quality, and stability. The review overviews the beneficial effects of plant acquired components in modulating product quality in packaged form for commercial aspects in the market.
Collapse
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
13
|
Kamanina N. Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers (Basel) 2023; 15:2819. [PMID: 37447464 DOI: 10.3390/polym15132819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a specific nanotechnology approach is shown to increase the refractive and photoconductive parameters of the organic conjugated materials. The sensitization process, along with laser treatment, are presented in order to improve the basic physical-chemical properties of laser, solar energy, and general photonics materials. Effective nanoparticles, such as fullerenes, shungites, reduced graphene oxides, carbon nanotubes, etc., are used in order to obtain the bathochromic shift, increase the laser-induced change in the refractive index, and amplify the charge carrier mobility of the model matrix organics sensitized with these nanoparticles. The four-wave mixing technique is applied to test the main refractive characteristics of the studied materials. Volt-current measurements are used to estimate the increased charge carrier mobility. The areas of application for the modified nanostructured plastic matrixes are discussed and extended, while also taking into account the surface relief.
Collapse
Affiliation(s)
- Natalia Kamanina
- Vavilov State Optical Institute, Kadetskaya Liniya V.O. 5/2, 199053 St. Petersburg, Russia
- Department of Photonics, St. Petersburg Electrotechnical University ("LETI"), ul. Prof. Popova 5, 197376 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute, Part of Kurchatov National Research Center, 1 md. Orlova Roshcha, 188300 Gatchina, Russia
| |
Collapse
|
14
|
Prakoso FAH, Indiarto R, Utama GL. Edible Film Casting Techniques and Materials and Their Utilization for Meat-Based Product Packaging. Polymers (Basel) 2023; 15:2800. [PMID: 37447446 DOI: 10.3390/polym15132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
According to a profusion of academic studies on the use of organic materials or biopolymers as key components, the current trajectory of food packaging techniques is showing a positive inclination. Notably, one such biopolymer that has attracted much attention is edible film. The biopolymers that have been stated as constitutive components are composed of polysaccharides, lipids, proteins, or a combination of these, which work together to reinforce one another's properties and create homogenous mixtures. An edible film provides a clear, thin layer that encases foodstuffs, including their packaging. The production and use of edible film have recently been the focus of much research in the field of food polymers. Extending the shelf life of food goods is the goal of this research. Given their great susceptibility to change brought on by outside forces or pollutants, which may result in oxidative rancidity, the proper storage of nutrient-dense food items, particularly meat products, deserves careful study. Many edible films have been found to contain active ingredients, such antimicrobials or antioxidants, that can successfully prevent the spoiling of meat products, a process that can happen in a short amount of time. Surprisingly, a number of scholarly examinations reveal that edible film may be cooked alongside meat because of its organic makeup. We hope that the use of edible film will lead to a more environmentally responsible method of food packaging than has previously been possible.
Collapse
Affiliation(s)
- Fauzi Atsani Harits Prakoso
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Rossi Indiarto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan I No. 1, Bandung 40134, Indonesia
| |
Collapse
|
15
|
Boiteux J, Espino M, Azcarate S, Silva MF, Gomez FJV, Pizzuolo P, Fernandez MDLA. NADES blend for bioactive coating design as a sustainable strategy for postharvest control. Food Chem 2023; 406:135054. [PMID: 36450196 DOI: 10.1016/j.foodchem.2022.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Bioactive functional coatings constitute a trendy topic due to they reduce postharvest fruit losses worldwide. Also, they could be carriers of biocompounds providing health benefits to the consumer. In this work, an innovative natural bioactive coating based on Natural Deep Eutectic Solvents (NADES) and Larrea divaricata extract was optimized by mixture-mixture design for the management of postharvest diseases caused by Monilinia fructicola. A NADES composed of lactic acid-glucose-water (LGH) for phenolic extraction from L. divaricata was optimized by a Simplex Lattice design and response surface methodology (RSM).Then, a d-optimal mixture-mixture design was carried out in order to optimize the bioactive coating composition, being the optimal proportion of 0.7 L. divaricata-LGH extract and 0.3 NADES plasticizer (composed by glycerol, citric acid and water). The optimal biocoating achieved an in vitro antimicrobial activity of 72 % against M. fructicola. Interestingly, NADES plasticizer improves the biocoating functionality, creating a smooth and uniform surface.
Collapse
Affiliation(s)
- Joana Boiteux
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA-UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Magdalena Espino
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvana Azcarate
- Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, La Pampa, Argentina
| | - María Fernanda Silva
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA-UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Federico J V Gomez
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA-UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Pablo Pizzuolo
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA-UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María de Los Angeles Fernandez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
16
|
Mohammadi M, Zoghi A, Azizi MH. Assessment of properties of gluten-based edible film formulated with beeswax and DATEM for hamburger bread coating. Food Sci Nutr 2023; 11:2061-2068. [PMID: 37051335 PMCID: PMC10084950 DOI: 10.1002/fsn3.3242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Using edible films and coatings is one of the effective methods of improving the quality of bread. The aim of the present work was the development of gluten-based films containing lipids to be applied as bread coating, intending to improve quality and delay staleness. In this study, two types of lipids including beeswax and DATEM (diacetyl tartaric ester monoglycerides) were incorporated into gluten film at different levels. The findings showed that inserting both lipids together into gluten for film preparation, weakened the developed films in terms of mechanical and moisture barrier properties. Adding DATEM to the gluten film formulae decreased the elongation at the break and the tensile strength of the film. Using gluten-beeswax coatings for hamburger bread, compared to gluten-DATEM coatings, indicated a significant decrease in the hardness and staling feature. Moreover, applying sorbate as a preservative along with the solvents used in the film preparation prevented the growth of mold during the bread shelf life. In conclusion, the findings in this study indicated that the type and levels of lipids added to the edible gluten-based films and coatings affected the film properties and coated hamburger bread quality, significantly.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Alaleh Zoghi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modarres UniversityTehranIran
| |
Collapse
|
17
|
Zhang L, Piao X. Use of aromatic plant-derived essential oils in meat and derived products: Phytochemical compositions, functional properties, and encapsulation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
New Bioactive Edible Packing Systems: Synbiotic Edible Films/Coatings as Carries of Probiotics and Prebiotics. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Baran A. Effect of <i>Althaea rosea</i> flower gum loaded with <i>Thymbra spicata</i> (Zahter) essential oil coating on shelf life and quality of beef patties (Koefte) during cold storage. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2023. [DOI: 10.21285/2227-2925-2022-12-4-538-546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this research is to determine the effect of Althaea rosea flower gum loaded with Thymbra spicata essential oils coating on packaged beef patties during cold storage. For this purpose, samples were evaluated in terms of pH, color, thiobarbituric acid reactive substances (TBARS), and microbiological properties. In addition, texture profile analysis (TPA) was performed to evaluate the textural properties of the beef patties. The essential oil treatment to the beef patties had a significant effect (p<0.05) on the pH values at the end of storage. The coating significantly affected the L* (lightness), a* (redness) and b* (yellowness) values (p<0.05). A similar situation was also found for lipid oxidation (1.00 µmol MDA (g). The coated samples with essential oil-treated had the lowest values of total aerobic bacteria (3.29 log CFU/g), yeast and mold (2.99 log CFU/g), lactic acid bacteria (2.23 log CFU/g), and total psychrophilic bacteria (2.58 log CFU/g). While the effect of the coating on the adhesiveness, gumminess, and chewiness values of the beef patties at the end of storage was significant (p<0.05), it did not affect other textural properties. Current research has shown that Althaea rosea flower gum can be used in edible coatings and, when fortified with Thymbra spicata essential oil, can be used in muscle foods for preservation and shelf-life extension.
Collapse
Affiliation(s)
- A. Baran
- Vocational School of Technical Sciences, Atatürk University
| |
Collapse
|
20
|
|
21
|
Chaudhary V, Kajla P, Kumari P, Bangar SP, Rusu A, Trif M, Lorenzo JM. Milk protein-based active edible packaging for food applications: An eco-friendly approach. Front Nutr 2022; 9:942524. [PMID: 35990328 PMCID: PMC9385027 DOI: 10.3389/fnut.2022.942524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Whey and casein proteins, in particular, have shown considerable promise in replacing fossil-based plastics in a variety of food applications, such as for O2 susceptible foods, thereby, rendering milk proteins certainly one of the most quality-assured biopolymers in the packaging discipline. Properties like excellent gas barrier properties, proficiency to develop self-supporting films, adequate availability, and superb biodegradability have aroused great attention toward whey and other milk proteins in recent years. High thermal stability, non-toxicity, the ability to form strong inter cross-links, and micelle formation, all these attributes make it a suitable material for outstanding biodegradability. The unique structural and functional properties of milk proteins make them a suitable candidate for tailoring novel active package techniques for satisfying the needs of the food and nutraceutical industries. Milk proteins, especially whey proteins, serve as excellent carriers of various ingredients which are incorporated in films/coatings to strengthen barrier properties and enhance functional properties viz. antioxidant and antimicrobial. In this review, the latest techniques pertaining to the conceptualization of active package models/ systems using milk proteins have been discussed. Physical and other functional properties of milk protein-based active packaging systems are also reviewed. This review provides an overview of recent applications of milk protein-sourced active edible packages in the food packaging business.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Parveen Kumari
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States
| | - Alexandru Rusu
- Department of Food Science, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
22
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Janowicz M, Rybak K, Ciurzyńska A, Galus S. Effect of interactions of locust bean gum and rosehip juice on the physical properties of gum tragacanth composite films. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Monika Janowicz
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Katarzyna Rybak
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Agnieszka Ciurzyńska
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Sabina Galus
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| |
Collapse
|
24
|
Properties and biological activity of chitosan-coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Abstract
Over the last few years, new nanoparticle preparation methods have emerged by replacing the usual reagents with plant extracts obtained in different conditions. An example of a natural plant extract is those of cruciferous vegetables, to obtain the new bio-nano-coatings. Given the composition of cruciferous extracts and large amounts of wastes produced all over the world, they can be successful substitutes to replace conventional coatings and extend the possibility of “smart coatings“. The present review aims to be a critical discussion regarding the application of cruciferous waste in nanotechnological applications. This review paper can be a starting report for different researchers who intend to use this sustainable approach “from green to nanotechnology” to transpose manufacturing from laboratory to industry. Applying this approach to obtain nanostructures with plant waste highlights the importance of minimizing and re-utilizing residues from primary and secondary processing via chemical and social intervention, in order to contribute to the sustainability needs of the planet and its inhabitants.
Collapse
|
26
|
|
27
|
Effect of crosslinking by microbial transglutaminase of gelatin films on lysozyme kinetics of release in food simulants. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Milk Protein-Based Edible Films: Influence on Mechanical, Hydrodynamic, Optical and Antioxidant Properties. COATINGS 2022. [DOI: 10.3390/coatings12020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Edible films are thin preformed layers that provide food protection against adverse environmental conditions. Despite milk proteins being functional ingredients that can provide interesting features to films, there is scarce information evaluating their influence on film properties and stability. For this reason, this research work compared the mechanical (thickness, tensile strength, elongation at break), hydrodynamic (moisture content, water solubility, swelling ratio, water vapor transmission rate), color and antioxidant (DPPH) properties of edible films based on casein and whey protein isolate (two types, WPI1 and WPI2). Films with casein displayed the highest thickness (0.193 mm), elongation at break (49.67%), moisture content (40.21%) and antioxidant capacity (32.64% of DPPH inhibition), while obtaining the lowest water vapor transmission rate (15.28 g/m2·day). Significant differences were found in the color properties, mainly between films with casein and those made with WPI. Films containing WPI1 and WPI2 were statistically similar in thickness, tensile strength and color properties. The results showed that the properties of the edible films depended on the type of milk protein used. Thus, it is important to evaluate the features provided by different ingredients and formulations for obtaining edible films that properly preserve food.
Collapse
|
29
|
Kontogianni VG, Kasapidou E, Mitlianga P, Mataragas M, Pappa E, Kondyli E, Bosnea L. Production, characteristics and application of whey protein films activated with rosemary and sage extract in preserving soft cheese. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Lencova S, Zdenkova K, Demnerova K, Stiborova H. Short communication: Antibacterial and antibiofilm effect of natural substances and their mixtures over Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Walid Y, Malgorzata N, Katarzyna R, Piotr B, Ewa O, Izabela B, Wissem A, Majdi H, Slim J, Karima H, Dorota W, Moufida S. Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin–chitosan film using mixture design. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yeddes Walid
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
- Faculty of Science of Bizerte University of Carthage Jarzouna Tunisia
| | - Nowacka Malgorzata
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Rybak Katarzyna
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Boruszewski Piotr
- Institute of Wood Sciences and Furniture Warsaw University of Life Sciences Warsaw Poland
| | - Ostrowska‐Ligeza Ewa
- Department of Chemistry Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Betlej Izabela
- Institute of Wood Sciences and Furniture Warsaw University of Life Sciences Warsaw Poland
| | - Aidi‐Wannes Wissem
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Hammami Majdi
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Jallouli Slim
- Laboratory of Bioactive Substances Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| | - Horchani‐Naifer Karima
- Laboratory of Physico‐Chemistry of Mineral Materials and their Applications National Center for Research in Materials Science Soliman Tunisia
| | - Witrowa‐Rajchert Dorota
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland
| | - Saidani‐Tounsi Moufida
- Laboratory of Aromatic and Medicinal Plants Borj Cedria Biotechnology Center Hammam‐Lif Tunisia
| |
Collapse
|
32
|
Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. Int J Biol Macromol 2021; 192:1160-1168. [PMID: 34678378 DOI: 10.1016/j.ijbiomac.2021.10.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023]
Abstract
Antioxidant and antimicrobial chitosan (CS) films incorporated with different concentrations (0, 3, 6 and 9% w/w based on chitosan) of pomegranate peel powder (PPP) were prepared through a simple and low-cost process and characterized. The physicochemical property, antioxidant and antibacterial properties of the films were investigated. Results showed that incorporation with PPP increased the thickness, water solubility (WS), water vapor permeability (WVP), opacity and total phenolic content (TPC) of chitosan films, but decreased the moisture content (MC) and mechanical property. Fourier transform infrared (FTIR) spectroscopy indicated the formation of hydrogen bonds between chitosan and PPP. In addition, scanning electron microscopy (SEM) analysis presented that microstructural attributes of chitosan film changed by enriching with pomegranate peel. The films with concentrations of PPP at 6 and 9% presented great ultraviolet-visible light barrier properties. Moreover, the antioxidant ability of films with PPP was significantly increased compared to the chitosan film. The addition of PPP also promoted the antibacterial capacity of the control film. These results revealed that incorporation of PPP in chitosan film could fabricate an economical active film with antioxidant and antibacterial properties, and which had the potential for developing food-grade packaging material.
Collapse
|
33
|
Disposable Food Packaging and Serving Materials-Trends and Biodegradability. Polymers (Basel) 2021; 13:polym13203606. [PMID: 34685364 PMCID: PMC8537343 DOI: 10.3390/polym13203606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Food is an integral part of everyone’s life. Disposable food serving utensils and tableware are a very convenient solution, especially when the possibility of the use of traditional dishes and cutlery is limited (e.g., takeaway meals). As a result, a whole range of products is available on the market: plates, trays, spoons, forks, knives, cups, straws, and more. Both the form of the product (adapted to the distribution and sales system) as well as its ecological aspect (biodegradability and life cycle) should be of interest to producers and consumers, especially considering the clearly growing trend of “eco-awareness”. This is particularly important in the case of single-use products. The aim of the study was to present the current trends regarding disposable utensils intended for contact with food in the context of their biodegradability. This paper has summarized not only conventional polymers but also their modern alternatives gaining the attention of manufacturers and consumers of single-use products (SUPs).
Collapse
|
34
|
Properties and Application of Edible Modified Bacterial Cellulose Film Based Sago Liquid Waste as Food Packaging. Polymers (Basel) 2021; 13:polym13203570. [PMID: 34685329 PMCID: PMC8538080 DOI: 10.3390/polym13203570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial cellulose (BC) based on sago liquid waste has been developed to be used as food packaging. This study investigated the physicochemical and mechanical properties of modified BC film and its application as food packaging. The modified BC film performed carboxymethyl cellulose (CMC) as a stabilizer and glycerol as a plasticizer. Films were prepared by casting technique using BC as the primary material and composites with various concentrations of CMC and glycerol (0.5%, 1%, and 1.5%, v/v). BC film was applied as the packaging of meat sausage, and the quality of meat sausage was measured based on weight loss, moisture content, pH, protein content, and total microbial count. The addition of CMC and glycerol influences the physical and mechanical properties of BC composites film. The best mechanical properties of edible BC film were collected by adding 1% CMC and 1% glycerol with a tensile strength of 17.47 MPa, elongation at a break of 25.60%, and Young’s modulus of 6.54 GPa. FTIR analysis showed the characteristic bands of BC, and the addition of CMC and glycerol slightly changed the FTIR spectrum of the composites. The utilization of modified BC-based sago liquid waste film as the packaging of meat sausage could maintain sausage quality during 6 days of storage at room temperature. Therefore, edible BC film has the potential to be used as food packaging.
Collapse
|
35
|
Rodrigues JP, de Souza Coelho CC, Soares AG, Freitas-Silva O. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Carbone K, Macchioni V, Petrella G, Cicero DO, Micheli L. Humulus lupulus Cone Extract Efficacy in Alginate-Based Edible Coatings on the Quality and Nutraceutical Traits of Fresh-Cut Kiwifruit. Antioxidants (Basel) 2021; 10:1395. [PMID: 34573027 PMCID: PMC8469953 DOI: 10.3390/antiox10091395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, an innovative coating strategy that is able to prolong the shelf-life of fresh-cut kiwifruit was proposed, and the effectiveness of the procedure was evaluated for a period of ten days under cold storage (4 °C). Alginate (2% m/v) functionalized with green extracts from hop (Humulus lupulus L.) cones (HE; 0.5 and 1%, v/v) was used as a coating material in order to assess the best performing strategy, leading to the most stable product. At the concentrations used to formulate the edible coatings, no contribution related to hop bitterness on the final product was recorded. The results were compared to control samples (without edible coating and coated only with alginate at 2% m/v). The plant extract was characterized by its main chemical traits and by 1H NMR profiling, revealing the presence of antioxidant and antimicrobial bioactive compounds (i.e., alpha and beta hop acids, xanthohumol). Furthermore, the characteristics of the samples during cold storage were evaluated by physico-chemical (i.e., weight loss, soluble solid content, titratable acidity, pH, color attributes) and nutraceutical (i.e., total polyphenol, ascorbic acid content, total carotenoids, chlorophylls) traits. The results showed that the incorporation of hop extracts into the edible coatings tested was able to preserve the quality and nutraceutical traits of fresh-cut kiwifruit during cold storage, thus prolonging their shelf life and marketability.
Collapse
Affiliation(s)
- Katya Carbone
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Valentina Macchioni
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
38
|
Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure. Pharmaceutics 2021; 13:pharmaceutics13071020. [PMID: 34371712 PMCID: PMC8309085 DOI: 10.3390/pharmaceutics13071020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/29/2023] Open
Abstract
The petroleum-based materials could be replaced, at least partially, by biodegradable packaging. Adding antimicrobial activity to the new packaging materials can also help improve the shelf life of food and diminish the spoilage. The objective of this research was to obtain a novel antibacterial packaging, based on alginate as biodegradable polymer. The antibacterial activity was induced to the alginate films by adding various amounts of ZnO nanoparticles loaded with citronella (lemongrass) essential oil (CEO). The obtained films were characterized, and antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella Typhi) and two Gram-positive (Bacillus cereus and Staphylococcus aureus) bacterial strains. The results suggest the existence of synergy between antibacterial activities of ZnO and CEO against all tested bacterial strains. The obtained films have a good antibacterial coverage, being efficient against several pathogens, the best results being obtained against Bacillus cereus. In addition, the films presented better UV light barrier properties and lower water vapor permeability (WVP) when compared with a simple alginate film. The preliminary tests indicate that the alginate films with ZnO nanoparticles and CEO can be used to successfully preserve the cheese. Therefore, our research evidences the feasibility of using alginate/ZnO/CEO films as antibacterial packaging for cheese in order to extend its shelf life.
Collapse
|
39
|
The Effect of Whey Protein-Based Edible Coatings Incorporated with Lemon and Lemongrass Essential Oils on the Quality Attributes of Fresh-Cut Pears during Storage. COATINGS 2021. [DOI: 10.3390/coatings11070745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to determine the effect of edible coatings based on whey protein isolate and essential oils (lemon and lemongrass) on the colour, hardness, polyphenols and flavonoids content, structure, and sensory attributes of fresh-cut pears during storage at 4 °C. The optical and barrier properties of the edible films were also determined. Analysed films showed good transparency (Lightness 86.6–95.0) and excellent oxygen and carbon dioxide permeability, which were reduced due to the presence of lemon and lemongrass essential oils. Pears were coated by immersion in a solution containing 8% of whey protein isolate and the addition of lemon oil at 1.0% or lemongrass essential oil at 0.5%. Coating caused a reduction in colour changes, loss in hardness, polyphenols and flavonoids. The study showed that the highest efficiency was demonstrated by the whey protein isolate coatings without the addition of essential oils by preserving the colour and firmness of fresh-cut pears. For these samples, the highest sensory acceptability was also achieved.
Collapse
|
40
|
Li Y, Tang C, He Q. Effect of orange (Citrus sinensis L.) peel essential oil on characteristics of blend films based on chitosan and fish skin gelatin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
42
|
Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res Int 2021; 145:110402. [PMID: 34112405 DOI: 10.1016/j.foodres.2021.110402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.
Collapse
|
43
|
Gopalakrishnan S, Xu J, Zhong F, Rotello VM. Strategies for Fabricating Protein Films for Biomaterials Applications. ADVANCED SUSTAINABLE SYSTEMS 2021; 5:2000167. [PMID: 33709022 PMCID: PMC7942017 DOI: 10.1002/adsu.202000167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Proteins are naturally occurring functional building blocks that are useful for the fabrication of materials. Naturally-occurring proteins are biodegradable and most are biocompatible and non-toxic, making them attractive for the fabrication of biomaterials. Moreover, the fabrication of protein-based materials can be conducted in a green and sustainable manner due to their high aqueous solubility. Consequently, the applicability of protein-based materials is limited by their aqueous and mechanical instability. This review summarizes strategies for the stabilization of protein films, highlighting their salient features and potential limitations. Applications of protein films ranging from food packaging materials, tissue engineering scaffolds, antimicrobial coatings etc. are also discussed. Finally, the need for robust and efficient fabrication strategies for translation to commercial applications as well as potential applications of protein films in the field of sensing, diagnostics and controlled release systems are discussed.
Collapse
Affiliation(s)
- Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
| | - Jinlong Xu
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
| |
Collapse
|
44
|
Galus S, Gaouditz M, Kowalska H, Debeaufort F. Effects of Candelilla and Carnauba Wax Incorporation on the Functional Properties of Edible Sodium Caseinate Films. Int J Mol Sci 2020; 21:ijms21249349. [PMID: 33302487 PMCID: PMC7764186 DOI: 10.3390/ijms21249349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate the effects of candelilla (CAN) or carnauba wax (CAR) incorporation on functional properties of edible sodium caseinate (CAS) films. Glycerol and Tween-80 were used as the plasticizer and the emulsifier, respectively. The results showed that the incorporation of waxes increased film opacity, total color differences (∆E), and mechanical resistance and reduced film lightness, water vapor permeability (WVP), and elongation at break. Scanning electron microscopy showed heterogeneous structure of emulsion films with regular distribution of lipid particles. A different internal arrangement was observed as a function of the film composition with both layered and incorporated film structure. Films containing candelilla wax exhibited more regular lipid reorganization, which resulted in better water vapor barrier efficacy and mechanical resistance in comparison to control films. The presence of Tween-80 resulted in better dispersion of lipid particles in film-forming solutions and lower water solubility, lightness, film opacity, and water vapor permeability, whereas the total color differences (∆E) were significantly larger and the improvement in mechanical properties was also achieved.
Collapse
Affiliation(s)
- Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-37-579
| | - Margaux Gaouditz
- IUT-Dijon-Auxerre, Département Génie Biologique, 7 Boulevard Docteur Petitjean, B.P. 17867, F-21078 Dijon CEDEX, France; (M.G.); (F.D.)
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Frédéric Debeaufort
- IUT-Dijon-Auxerre, Département Génie Biologique, 7 Boulevard Docteur Petitjean, B.P. 17867, F-21078 Dijon CEDEX, France; (M.G.); (F.D.)
- BioEngineering Department, Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
45
|
Abstract
Functionalization of protein-based materials by incorporation of organic and inorganic compounds has emerged as an active research area due to their improved properties and diversified applications. The present review provides an overview of the functionalization of protein-based materials by incorporating TiO2 nanoparticles. Their effects on technological (mechanical, thermal, adsorptive, gas-barrier, and water-related) and functional (antimicrobial, photodegradation, ultraviolet (UV)-protective, wound-healing, and biocompatibility) properties are also discussed. In general, protein–TiO2 hybrid materials are biodegradable and exhibit improved tensile strength, elasticity, thermal stability, oxygen and water resistance in a TiO2 concentration-dependent response. Nonetheless, they showed enhanced antimicrobial and UV-protective effects with good biocompatibility on different cell lines. The main applications of protein–TiO2 are focused on the development of eco-friendly and active packaging materials, biomedical (tissue engineering, bone regeneration, biosensors, implantable human motion devices, and wound-healing membranes), food preservation (meat, fruits, and fish oil), pharmaceutical (empty capsule shell), environmental remediation (removal and degradation of diverse water pollutants), anti-corrosion, and textiles. According to the evidence, protein–TiO2 hybrid composites exhibited potential applications; however, standardized protocols for their preparation are needed for industrial-scale implementation.
Collapse
|
46
|
Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite-Potential Coating for Grapes. Foods 2020; 9:foods9121801. [PMID: 33291604 PMCID: PMC7761909 DOI: 10.3390/foods9121801] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.
Collapse
|
47
|
New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells. NANOMATERIALS 2020; 10:nano10112130. [PMID: 33120890 PMCID: PMC7692575 DOI: 10.3390/nano10112130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries.
Collapse
|
48
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
49
|
Łopusiewicz Ł, Drozłowska E, Trocer P, Kostek M, Śliwiński M, Henriques MHF, Bartkowiak A, Sobolewski P. Whey Protein Concentrate/Isolate Biofunctional Films Modified with Melanin from Watermelon ( Citrullus lanatus) Seeds. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3876. [PMID: 32887321 PMCID: PMC7503266 DOI: 10.3390/ma13173876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
Valorization of food industry waste and plant residues represents an attractive path towards obtaining biodegradable materials and achieving "zero waste" goals. Here, melanin was isolated from watermelon (Citrullus lanatus) seeds and used as a modifier for whey protein concentrate and isolate films (WPC and WPI) at two concentrations (0.1% and 0.5%). The modification with melanin enhanced the ultraviolet (UV) blocking, water vapor barrier, swelling, and mechanical properties of the WPC/WPI films, in addition to affecting the apparent color. The modified WPC/WPI films also exhibited high antioxidant activity, but no cytotoxicity. Overall, the effects were melanin concentration-dependent. Thus, melanin from watermelon seeds can be used as a functional modifier to develop bioactive biopolymer films with good potential to be exploited in food packaging and biomedical applications.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Mariusz Śliwiński
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland
| | - Marta H F Henriques
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, PT-3045-601 Coimbra, Portugal
- CERNAS-Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin 45 Piastów Ave, 70-311 Szczecin, Poland
| |
Collapse
|