1
|
Rajkamal A, Kim H. Theoretical verification on adsorptive removal of caffeine by carbon and nitrogen-based surfaces: Role of charge transfer, π electron occupancy, and temperature. CHEMOSPHERE 2023; 339:139667. [PMID: 37516324 DOI: 10.1016/j.chemosphere.2023.139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Eliminating an emerging water pollutant, caffeine molecules, from an aqueous solution using carbon and nitrogen-based adsorbents is of significant interest to public health. These adsorbents have been shown to have decent adsorption capacity toward caffeine due to their surface functionality. Therefore, screening various carbon and nitrogen-based surfaces can be a better option for high-performance adsorbents to remove caffeine efficiently from wastewater. Herein, we present combined first principles and molecular dynamics quantification of the adsorption enthalpies of caffeine molecules on the possible active sites of carbon and nitrogen-based adsorbents (graphene, phagraphene, graphdiyne, single-wall carbon nanotube, fullerene, and graphitic carbon nitride) with the incorporation of Van der Waals interactions. From the DFT calculations, N-doped carbon surfaces show the highest adsorption energies of single and dimer CAF compared to pristine carbon-based adsorbents. A charge density difference and Bader charge analysis display that high charge transfer occurs between the caffeine's oxygen and the surface's nitrogen atoms. An abundance of π-electrons from the nitrogen atoms, composed of large electron clouds of aromatic rings on the graphitic carbon surface, tends to favor extensive π-π interactions with the caffeine molecule. The high value of pz electron occupancy (1.445) of N in the hexagonal ring of the graphitic surface transfers additional charge transfer, which leads to strong adsorption energy of CAF than pristine surfaces. Also, the g-C3N4 surface adsorbs the CAF molecule with higher adsorption than other N-doped carbon surfaces due to the high pz_eo (1.5448) of N atoms on the surface. At 310 K, the water molecules' kinetics aids the single and dimer caffeine molecules to adsorb with the highest adsorption energies on the active sites of g-C3N4 surfaces than graphene adsorbent.
Collapse
Affiliation(s)
- Anand Rajkamal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Yang H, He W, Li Y. Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. Int J Mol Sci 2023; 24:13548. [PMID: 37686353 PMCID: PMC10488033 DOI: 10.3390/ijms241713548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Phthalate esters (PAEs) are widely exposed in the environment as plasticizers in plastics, and they have been found to cause significant environmental and health hazards, especially in terms of endocrine disruption in humans. In order to investigate the processes underlying the endocrine disruption effects of PAEs, three machine learning techniques were used in this study to build an adverse outcome pathway (AOP) for those effects on people. According to the results of the three machine learning techniques, the random forest and XGBoost models performed well in terms of prediction. Subsequently, sensitivity analysis was conducted to identify the initial events, key events, and key features influencing the endocrine disruption effects of PAEs on humans. Key features, such as Mol.Wt, Q+, QH+, ELUMO, minHCsats, MEDC-33, and EG, were found to be closely related to the molecular structure. Therefore, a 3D-QSAR model for PAEs was constructed, and, based on the three-dimensional potential energy surface information, it was discovered that the hydrophobic, steric, and electrostatic fields of PAEs significantly influence their endocrine disruption effects on humans. Lastly, an analysis of the contributions of amino acid residues and binding energy (BE) was performed, identifying and confirming that hydrogen bonding, hydrophobic interactions, and van der Waals forces are important factors affecting the AOP of PAEs' molecular endocrine disruption effects. This study defined and constructed a comprehensive AOP for the endocrine disruption effects of PAEs on humans and developed a method based on theoretical simulation to characterize the AOP, providing theoretical guidance for studying the mechanisms of toxicity caused by other pollutants.
Collapse
Affiliation(s)
| | | | | | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; (Y.L.); (H.Y.); (W.H.)
| |
Collapse
|
3
|
Betti N, Al-Amiery AA, Al-Azzawi WK, Isahak WNRW. Corrosion inhibition properties of schiff base derivative against mild steel in HCl environment complemented with DFT investigations. Sci Rep 2023; 13:8979. [PMID: 37268687 PMCID: PMC10238447 DOI: 10.1038/s41598-023-36064-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
There is growing interest in using corrosion inhibitors and protective treatments to limit the degradation of mild steel, leading to the development of numerous Schiff bases as cutting-edge inhibitors. In this study, the effectiveness of a Schiff base, 3-((5-mercapto-1,3,4-thiadiazol-2-yl)imino)indolin-2-one (MTIO), to prevent mild steel corrosion in HCl was investigated using weight loss measurements, potentiodynamic polarization measurements, electrochemical impedance spectroscopy techniques, and surface characterization. The experimental results showed that 0.5 mM MTIO exhibited a satisfactory inhibitor efficiency of 96.9% at 303 K. The MTIO molecules physically and chemically adsorbed onto the mild steel surface following the Langmuir model, forming a compact protective film attributed to the presence of a thiazole ring in the MTIO structure. Theoretical calculations were combined with experimental techniques to investigate the anticorrosion performance and mechanism of inhibition.
Collapse
Affiliation(s)
- Nadia Betti
- Materials Engineering Department, University of Technology-Iraq, P.O. Box: 10001, Baghdad, Iraq
| | - Ahmed A Al-Amiery
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43000, Bangi, Selangor, Malaysia.
- Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad, 10001, Iraq.
| | | | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43000, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Synthesis and characterization of novel acrylamide derivatives and their use as corrosion inhibitors for carbon steel in hydrochloric acid solution. Sci Rep 2023; 13:3519. [PMID: 36864262 PMCID: PMC9981741 DOI: 10.1038/s41598-023-30574-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Two new acrylamide derivatives were prepared namely: "N-(bis(2-hydroxyethyl) carbamothioyl) acrylamide (BHCA) and N-((2-hydroxyethyl) carbamothioyl) acrylamide( HCA) and their chemical structures were analyzed and confirmed using IR and 1H NMR". These chemicals were investigated as corrosion inhibitors for carbon steel (CS) in 1 M HCl medium using chemical method (mass loss, ML), and electrochemical techniques including potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The results showed that the acrylamide derivatives work well as corrosion inhibitors, with inhibition efficacy (%IE) reaching 94.91-95.28% at 60 ppm for BHCA and HCA, respectively. Their inhibition depends mainly on their concentration and temperature of the solution. According to the PDP files, these derivatives function as mixed-type inhibitors that physically adsorb on the CS surface in accordance with the Langmuir adsorption isotherm, creating a thin coating that shields the CS surface from corrosive fluids. The charge transfer resistance (Rct) increased and the double layer capacitance (Cdl) decreased as a result of the adsorption of the used derivatives. Calculated and described were the thermodynamic parameters for activation and adsorption. Quantum chemistry computations and Monte Carlo simulations were examined and discussed for these derivatives under investigation. Surface analysis was checked using atomic force microscope (AFM). Validity of the obtained data was demonstrated by the confirmation of these several independent procedures.
Collapse
|
5
|
Exploring the potential of [F. oxysporum/PSCO11Cu7]BNC as a novel copper-Fusarium oxysporum bio-hybrid nanocomposite for wastewater treatment. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Terminalia catappa as Effective Corrosion Resistance in Acidic Medium for Medical Stainless Steel via Experimental and Computational Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
El-Mokadem TH, Hashem A, Abd el-Sattar NE, A DE, Abdelshafi N. Green synthesis, electrochemical, DFT studies and MD simulation of novel synthesized thiourea derivatives on carbon steel corrosion inhibition in 1.0 M HCl. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Rosmarinus officinalis extract as eco-friendly corrosion inhibitor for copper in 1M Nitric acid solution: Experimental and Theoretical Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Abu-Rayyan A, Al Jahdaly BA, AlSalem HS, Alhadhrami NA, Hajri AK, Bukhari AAH, Waly MM, Salem AM. A Study of the Synthesis and Characterization of New Acrylamide Derivatives for Use as Corrosion Inhibitors in Nitric Acid Solutions of Copper. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3685. [PMID: 36296875 PMCID: PMC9611118 DOI: 10.3390/nano12203685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The objective of this research was to explore the impact of corrosion inhibition of some synthetic acrylamide derivatives 2-cyano-N-(4-hydroxyphenyl)-3-(4-methoxyphenyl)acrylamide (ACR-2) and 2-cyano-N-(4-hydroxyphenyl)-3-phenylacrylamide (ACR-3) on copper in 1.0 M nitric acid solution using chemical and electrochemical methods, including mass loss as a chemical method and electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) as electrochemical methods. By Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1HNMR), and mass spectroscopy (MS) methods, the two compounds were verified and characterized. There is evidence that both compounds were effective corrosion inhibitors for copper in 1.0 M nitric acid (HNO3) solutions, as indicated by the PP curves, which show that these compounds may be considered mixed-type inhibitors. With the two compounds added, the value of the double-layer capacitance was reduced. In the case of 20 × 10-5 M, they reached maximum efficiencies of 84.5% and 86.1%, respectively. Having studied its behavior during adsorption on copper, it was concluded that it follows chemical adsorption and Langmuir isotherm. The theoretical computations and the experimental findings were compared using density functional theory (DFT) and Monte Carlo simulations (MC).
Collapse
Affiliation(s)
- Ahmed Abu-Rayyan
- Chemistry Department, Faculty of Arts & Science, Applied Science Private University, P.O. Box 166, Amman 11931, Jordan
| | - Badreah Ali Al Jahdaly
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 24230, Makkah 21955, Saudi Arabia
| | - Huda S. AlSalem
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nahlah A. Alhadhrami
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Medina 42353, Saudi Arabia
| | - Amira K. Hajri
- Department of Chemistry, University College Alwajh, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Mohamed M. Waly
- Department of Chemistry, Faculty of Science, New Mansoura University, Mansoura 35516, Egypt
| | - Aya M. Salem
- Department of Basic Science, Higher Institute of Electronic Engineering (HIEE), Belbis 11621, Egypt
| |
Collapse
|
10
|
Hadisaputra S, Purwoko AA, Hakim A, Prasetyo N, Hamdiani S. Corrosion Inhibition Properties of Phenyl Phthalimide Derivatives against Carbon Steel in the Acidic Medium: DFT, MP2, and Monte Carlo Simulation Studies. ACS OMEGA 2022; 7:33054-33066. [PMID: 36157755 PMCID: PMC9494647 DOI: 10.1021/acsomega.2c03091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The effectiveness of phenyl phthalimide and its derivatives at preventing corrosion of carbon steel has been tested experimentally using gravimetric and electrochemical measurements. However, experimental studies have not thoroughly explained the structural patterns and coating mechanisms of phenyl phthalimide and its derivatives during corrosion inhibition. In this study, the density functional theory (DFT), ab initio MP2, and Monte Carlo simulation are applied to study phenyl phthalimide (PP) and its derivatives as corrosion inhibitors of carbon steel. The geometry, quantum parameters, and reactive site of the inhibitors were determined by DFT and ab initio MP2 methods. The real environment conditions of corrosion inhibition in the solution phase can be replicated by the Monte Carlo simulation. The corrosion inhibition efficiency of phthalimide derivatives is PP-OCH3 > PP-CH3 > PP-H > PP-Cl > PP-NO2. The theoretical study is consistent with previously reported experimental results.
Collapse
Affiliation(s)
- Saprizal Hadisaputra
- Chemistry Education
Division, University of Mataram, Jalan Majapahit No 62, Mataram 83125, Indonesia
| | - Agus Abhi Purwoko
- Chemistry Education
Division, University of Mataram, Jalan Majapahit No 62, Mataram 83125, Indonesia
| | - Aliefman Hakim
- Chemistry Education
Division, University of Mataram, Jalan Majapahit No 62, Mataram 83125, Indonesia
| | - Niko Prasetyo
- Austrian-Indonesian Centre for Computational Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Saprini Hamdiani
- Department of Applied Chemistry, Chaoyang University of Technology, No. 168, Jifeng E. Road, Wufeng District, Taichung 41349, Taiwan
| |
Collapse
|
11
|
Dey D, Biswas P, Paul P, Mahmud S, Ema TI, Khan AA, Ahmed SZ, Hasan MM, Saikat ASM, Fatema B, Bibi S, Rahman MA, Kim B. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 2022:10.1007/s11030-022-10491-9. [PMID: 35821161 DOI: 10.1007/s11030-022-10491-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6204, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Babry Fatema
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
12
|
Electrochemical Analysis of the Influence of Purines on Copper, Steel and Some Other Metals Corrosion. METALS 2022. [DOI: 10.3390/met12071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Metals stability and corrosion resistance are very important factors that influence the possibility of their applications. In order to study and foresee the behavior of metals during various applications in all kinds of conditions and media, numerous approaches and techniques are developed and applied. Among those techniques, electrochemical measurements nowadays have a dominant role since they are proved to be highly efficient, reliable, fast, relatively low-cost, and easy regarding the preparation and execution of measurements. Besides that, they also provide quite a good amount of data regarding the effect and the mechanism of the reactions that metals interact in. Metals corrosion is reduced by various methods, one of the most frequently used ones is the application of corrosion inhibitors. Usually, organic compounds are studied as potential corrosion inhibitors, and at the moment the focus is on the effect on the environment. Hence, environmentally friendly and non-toxic inhibitors are important research topics. Purines, since they are the group of bioorganic compounds found in numerous biochemical structures such as DNA and RNA, present a very interesting possible solution and are studied as inhibitors of corrosion for copper, steel, aluminum, etc., as well as for some metal alloys. Data obtained and available up until the present are presented and discussed in this review.
Collapse
|
13
|
Tan B, Lan W, Zhang S, Deng H, Qiang Y, Fu A, Ran Y, Xiong J, Marzouki R, Li W. Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128892] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Electrochemical and DFT Study of NaNO2/NaNO3 Corrosion Inhibitor Blends for Rebar in Simulated Concrete Pore Solution. COATINGS 2022. [DOI: 10.3390/coatings12060861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of nitrite- and nitrate-based inhibitors provides corrosion protection by the development of passive oxide film on the metal surface in reinforced concrete applications. However, the impact of the nitrite and nitrate ratio in the mixture has not been widely studied. In this study, the corrosion protection provided by NaNO2:NaNO3 inhibitor blends with ratios of 0.5:1, 1:1, and 1:0.5 were studied to maximize corrosion inhibition efficiency. The nitrite species imparted higher corrosion protection, as shown by cyclic potentiodynamic polarization, with an icorr of 1.16 × 10–7 A/cm2 for the 1:0.5 mixture, lower than for both the 1:1 and 0.5:1 mixtures. Electrochemical impedance spectroscopy was also performed, with the 1:0.5 mixture consistently displaying high resistance values, showing an Rct of 1.31 × 105 Ω cm2. The effect of temperature was also assessed; the Ea’s of the corrosion reaction were calculated to be 12.1, 9.2, and 4.9 kJ/mol for the 0.5:1, 1:1, and 1:0.5 (NO2−:NO3−) mixtures, respectively. Density functional theory was applied to analyze the molecular properties and to determine the relationship between the quantum properties and corrosion inhibition. The ΔE of NO2− was found to be −5.74 eV, lower than that of NO3− (−5.45 eV), corroborating the experimental results. Lastly, commercially available inhibitor mixtures were investigated and nitrite/nitrate concentrations determined to evaluate their corrosion protection performance; amongst the two inhibitor blends tested, Sika was found to outperform Yara due to its greater NO2− concentration.
Collapse
|
15
|
Fouda AEAS, Khalil EM, EL-Mahdy GA, Mohammed AS, El-Sattar NAA. Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium. Z PHYS CHEM 2022; 236:535-559. [DOI: 10.1515/zpch-2021-3170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Two new organic based corrosion compounds were prepared from Acryloyl chloride are namely: N,N-bis(2-hydroxyethyl) acrylamide (DEA) and N-(2-hydroxyethyl) acrylamide (MEA). The prepared compounds were studied as corrosion inhibitors for carbon steel (CS) in 1 M hydrochloric acid solution while the efficiency of the prepared compounds were studied through different chemical (weight loss, WL) and electrochemical techniques [potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS)] in addition to, the theoretical techniques as Quantum chemical calculations, Monte Carlo simulation and the surface morphology study using atomic force microscopy (AFM). The obtained results showed that the investigated compounds are working as good corrosion inhibitors, the inhibition efficacy (%IE) increases with the increase of the compound concentrations. However, the %IE decreases with the rise in the temperature proving that the adsorption of the inhibitor molecules on the CS surface is physisorption, while the polarization data revealed that these compounds are classified as mixed kind inhibitors, that inhibits both anodic and cathodic reactions. Results reveal that DEA and MEA exhibit an excellent %IE of 89.2 and 71.6% at 60 ppm for DEA and MEA, respectively. The adsorption of the inhibitor molecules on CS surface following Langmuir adsorption isotherm. There is a strong matching between results obtained from experimental and theoretical studies. The order of the investigated inhibitors based on the %IE is DEA > MEA.
Collapse
Affiliation(s)
| | - Eid M. Khalil
- Faculty of Science , Helwan University , Cairo , Egypt
| | | | - Ahmed S. Mohammed
- Refining and Processing Deputy, Egyptian General Petroleum Corporation , Cairo , Egypt
| | | |
Collapse
|
16
|
Tan B, Zhang S, Cao X, Fu A, Guo L, Marzouki R, Li W. Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J Colloid Interface Sci 2021; 609:838-851. [PMID: 34838315 DOI: 10.1016/j.jcis.2021.11.085] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
2,5-dihydroxy-1,4-dithiane (DDD) and 2,5-dimethy- [1.4] dithiane-2,5-diol (DTDD) two food flavors as environmentally-friendly inhibitors for Cu in 0.5 mol/L H2SO4 media were researched via theoretical calculation and experimental ways. Electrochemical measurement data showed that DDD and DTDD can exhibit high level anti-corrosion feature. The anti-corrosion efficiency of DDD and DTDD were as high as 99.6% and 98.9%, respectively. The atomic force microscope (AFM) and scanning electron microscope (SEM) tests showed that the Cu specimens were immersed in the H2SO4 with 5 mM DDD and DTDD for 30 h at the 298 K, and the Cu specimen surface was still smooth. Besides, the adsorption of DDD and DTDD at the interface of Cu/solution was comply with Langmuir adsorption. Theoretical calculation data showed that DDD exhibit more ascendant anti-corrosion feature than DTDD.
Collapse
Affiliation(s)
- Bochuan Tan
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, University Town, Shapingba District, Chongqing 401331, China.
| | - Shengtao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xianlong Cao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, University Town, Shapingba District, Chongqing 401331, China
| | - Anqing Fu
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and 11 Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an, Shaanxi 710077, PR China.
| | - Lei Guo
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Chemistry Department, Faculty of Sciences, University of Sfax, 1171, Sfax 3000, Tunisia
| | - Wenpo Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Carranza MSS, Reyes YIA, Gonzales EC, Arcon DP, Franco FC. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon 2021; 7:e07952. [PMID: 34541355 PMCID: PMC8441079 DOI: 10.1016/j.heliyon.2021.e07952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
The corrosion inhibition property of selected small organic compounds was investigated using electrochemical measurements, including potentiodynamic polarization (PDP), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and density functional theory (DFT) calculations. The inhibition efficiency (IE %) of the inhibitor on mild steel (MS) in 1 M HCl was then determined. Results show that the presence of the inhibitors resulted in decreased corrosion current density (Icorr) values and increased polarization resistance (Rp). Furthermore, the use of higher concentrations of inhibitors led to an increased inhibition efficiency. Tafel slopes and shifts in the Ecorr values suggested that the inhibitors tested are mixed-type inhibitors that form a protective layer on the surface of the substrate. Of the organic compound inhibitors tested, the inhibitor 4-ethylpyridine (EP) exhibited the highest Rp values and inhibition efficiency values from the PDP, LPR, and EIS analyses, respectively. DFT calculations showed negative adsorption energies and confirmed the chemisorption of the inhibitors allowing for the formation of a hydrophobic protective film against corrosion and correlations between the quantum chemical values and electrochemical data were demonstrated. The results show the influence of the presence of electronegative O, S, and N atoms, as well as the role of aromatic rings in the promotion of surface protection by preventing aggressive ionic species from binding onto MS.
Collapse
Affiliation(s)
| | - Yves Ira A Reyes
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | | | - Danielle P Arcon
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Francisco C Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
18
|
Souad B, Chafia S, Hamza A, Wahiba M, Issam B. Synthesis, Experimental and DFT Studies of Some Benzotriazole Derivatives as Brass C68700 Corrosion Inhibitors in NaCl 3 %. ChemistrySelect 2021. [DOI: 10.1002/slct.202004383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bouasla Souad
- Department Of chemistry & physics Normal High School of Technology Education (ENSET) Skikda Brother Bousseta, City 21300, Azzaba Algeria
| | - Sobhi Chafia
- Department of Petrochemistry and Process Engineering, Faculty of Technology University 20 aout 1955 Skikda, BP 26 route El-Hadaiek 21000, Skikda Algeria
| | - Allal Hamza
- Department of Technology, Faculty of Technology University 20 Aout 1955 Skikda 21000 Algeria
- Environmental, Molecular and Structural Chemistry Research Unit University of Constantine-1 25000 Constantine Algeria
| | - Mecibah Wahiba
- Department of Technology, Faculty of Technology University 20 Aout 1955 Skikda 21000 Algeria
| | - Bougdah Issam
- Department of Petrochemistry and Process Engineering, Faculty of Technology University 20 aout 1955 Skikda, BP 26 route El-Hadaiek 21000, Skikda Algeria
| |
Collapse
|