1
|
Geioushy RA, El-Sherbiny S, Mohamed ET, Fouad OA, Samir M. Mechanical characteristics and antibacterial activity against Staphylococcus aureus of sustainable cellulosic paper coated with Ag and Cu modified ZnO nanoparticles. Sci Rep 2024; 14:29722. [PMID: 39613804 DOI: 10.1038/s41598-024-79265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
In this study, zinc oxide (ZnO) nanoparticles were prepared and modified using a wet chemical method with different concentrations of Ag and Cu nanoparticles. The objective was to improve the mechanical, optical, and antibacterial properties of the coated paper by using the prepared pigments. The long-term antimicrobial effects of the coated paper were evaluated over 25 years. The successful synthesis of a hexagonal structure of ZnO nanoparticles decorated with spherical Ag and Cu nanoparticles ranging from 20 to 50 nm was confirmed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). By increasing the concentrations of Ag and Cu from 0.01% to 1.0%, the mechanical properties of the coated paper were enhanced. The tensile strength reached a maximum of 6.77 kN/m and 7.03 kN/m, elongation increased to 1.69% and 1.70%, tensile energy absorption improved to approximately 77 and 80 J/m2, and burst strength rose to 218 and 219 kPa, respectively. The use of Ag-modified ZnO maintains the optical properties, while Cu-modified ZnO reduces brightness and whiteness without affecting opacity. The antimicrobial inhibition activity was improved with higher silver (Ag) and copper (Cu) content. The formulations containing 1% Ag/ZnO and 1%Cu/ZnO showed long-lasting antibacterial effects against gram-positive Staphylococcus aureus bacteria. Even after 25 years of aging, they maintained inhibition rates of 92.2% and 62.2%, respectively. The molecular docking and GeneMANIA analysis revealed the potential of ZnO, Ag-modified ZnO, and Cu-modified ZnO nanoparticles to disrupt the S. aureus cell wall biosynthesis pathway by targeting the MurA enzyme and associated cell wall synthesis genes.
Collapse
Affiliation(s)
- Ramadan A Geioushy
- Central Metallurgical Research and Development Institute, Helwan, P.O. Box: 87, Cairo, 11421, Egypt.
| | - Samya El-Sherbiny
- Paper and Printing Laboratory, Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Osama A Fouad
- Central Metallurgical Research and Development Institute, Helwan, P.O. Box: 87, Cairo, 11421, Egypt
| | - Marwa Samir
- Paper and Printing Laboratory, Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
2
|
Wang X, Tian W, Ye Y, Chen Y, Wu W, Jiang S, Wang Y, Han X. Surface modifications towards superhydrophobic wood-based composites: Construction strategies, functionalization, and perspectives. Adv Colloid Interface Sci 2024; 326:103142. [PMID: 38555834 DOI: 10.1016/j.cis.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Amidst the burgeoning interest in multifunctional superhydrophobic wood-based composites (SWBCs) for their varied applications and the need for improved environmental resilience, recent efforts focus on enhancing their utility by integrating features such as mechanical and chemical stability, self-healing capabilities, flame resistance, and antimicrobial properties. Research indicates that various external conditions can influence the wettability and additional characteristics of SWBCs. This comprehensive review outlines three critical factors affecting SWBCs' performance: synthesis methods, wood taxonomy, and chemical agents. It further provides a detailed overview of SWBCs' specific attributes, including essential qualities for diverse applications and the limitations posed by different contexts. Additionally, it elaborates on performance evaluation techniques, offering a foundational framework for SWBCs' practical application. This work aims to serve as an important resource for future research and development in SWBC engineering.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhang Ye
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100000, China
| | - Weijie Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuli Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Ren F, He R, Ren J, Tao F, Yang H, Lv H, Ju X. A Friendly UV-Responsive Fluorine-Free Superhydrophobic Coating for Oil-Water Separation and Dye Degradation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fangyuan Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Rui He
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jinping Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Huanhuan Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Hongshui Lv
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xiuqin Ju
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
4
|
Jiang S, Zhou S, Du B, Luo R. Preparation of the Temperature-Responsive Superhydrophobic Paper with High Stability. ACS OMEGA 2021; 6:16016-16028. [PMID: 34179647 PMCID: PMC8223434 DOI: 10.1021/acsomega.1c01861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a method for preparing a high-stability superhydrophobic paper with temperature-induced wettability transition is proposed. First, a temperature-responsive superhydrophobic triblock polymer PHFMA-PTSPM-PNIPAAm was prepared by one-step polymerization of TSPM, HFMA, and NIPAAm in a mass ratio of 0.3:0.3:0.3, then a superhydrophobic paper with a good temperature response was successfully prepared by grafting amino-modified SiO2 with the polymer to modify the surface of the paper. A further study found that when the mass ratio of amino-modified SiO2 to polymer is 0.2, the coating has good superhydrophobicity and transparency. What is more, the prepared modified paper is in a superhydrophobic state when the temperature is higher than 32 °C, and is in a superhydrophilic state when it is lower than 32 °C, which can realize free conversion between superhydrophobic and superhydrophilic states. In addition, the superhydrophobic paper prepared by this method not only has high oil-water separation efficiency, and the superhydrophobic coating shows good stability and transparency, but also has low requirements of environmental conditions for preparation, relatively simple preparation process, and strong repeatability, and it has a very broad application prospect.
Collapse
|