1
|
Chirilă L, Stan MS, Olaru S, Popescu A, Lite MC, Toma D, Voinea IC. Novel Collagen-Based Emulsions Embedded with Palmarosa Essential Oil, and Chamomile and Calendula Tinctures, for Skin-Friendly Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3867. [PMID: 39124531 PMCID: PMC11313595 DOI: 10.3390/ma17153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile structure from 100% cotton. The functionalized textile materials were characterized in terms of physicochemical, mechanical, antibacterial, and biocompatibility points of view. The pH values of the prepared emulsions were in the range of 4.81-5.23 and showed no significant differences after 4 h of storage. Moreover, the addition of a higher quantity of active principles (palmarosa essential oil and plant tinctures) caused slightly lower values of acidic pH. The electrical conductivity of the obtained emulsions increased with the decrease in the oil phases in the system. The highest values were obtained for the emulsion developed with the smallest volume fraction of active principle-palmarosa essential oil and plant tinctures. The emulsion that contained the least amount of collagen and the highest number of active principles exhibited the lowest stability. The textile materials treated with synthesized emulsions exerted antibacterial effects against S. aureus and E. coli strains and did not affect keratinocyte growth, spreading, and organization, highlighting the biocompatibility of these developed skin-friendly textiles.
Collapse
Affiliation(s)
- Laura Chirilă
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Sabina Olaru
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Alina Popescu
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Mihaela-Cristina Lite
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Doina Toma
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
2
|
Elzein B. Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress". Heliyon 2024; 10:e31393. [PMID: 38818162 PMCID: PMC11137564 DOI: 10.1016/j.heliyon.2024.e31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Nanotechnology has emerged as a powerful tool in addressing global challenges and advancing sustainable development. By manipulating materials at the nanoscale, researchers have unlocked new possibilities in various fields, including energy, healthcare, agriculture, construction, transportation, and environmental conservation. This paper explores the potential of nanotechnology and nanostructures in contributing to the achievement of the United Nations (UN) Sustainable Development Goals (SDGs) by improving energy efficiency and energy conversion, leading to a more sustainable and clean energy future, improving water purification processes, enabling access to clean drinking water for communities, enabling targeted drug delivery systems, early disease detection, and personalized medicine, thus revolutionizing healthcare, improving crop yields, efficient nutrient delivery systems, pest control mechanisms, and many other areas, therefore addressing food security issues. It also highlights the potential of nanomaterials in environmental remediation and pollution control. Therefore, by understanding and harnessing nanotechnology's potential, policymakers, researchers, and stakeholders can work together toward a more sustainable future by achieving the 17 UN SDGs.
Collapse
Affiliation(s)
- Basma Elzein
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, 21451, Saudi Arabia
- Sustainable Development Department, Global Council for Tolerance and Peace, Valetta, Malta
| |
Collapse
|
3
|
Ungureanu AR, Ozon EA, Musuc AM, Anastasescu M, Atkinson I, Mitran RA, Rusu A, Popescu L, Gîrd CE. Preparation and Preliminary Analysis of Several Nanoformulations Based on Plant Extracts and Biodegradable Polymers as a Possible Application for Chronic Venous Disease Therapy. Polymers (Basel) 2024; 16:1362. [PMID: 38794552 PMCID: PMC11125073 DOI: 10.3390/polym16101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology is one of the newest directions for plant-based therapies. Chronic venous disease often predisposes to long-term and invasive treatment. This research focused on the inclusion of vegetal extracts from Sophorae flos (SE), Calendulae flos (CE), and Ginkgo bilobae folium (GE) in formulations with PHB and PLGA polymers and their physicochemical characterization as a preliminary stage for possible use in the development of a complex therapeutic product. The samples were prepared by an oil-water emulsification and solvent evaporation technique, resulting in suspensions with high spreadability and a pH of 5.5. ATR-FTIR analysis revealed bands for stretching vibrations (O-H, C=O, and C-H in symmetric and asymmetric methyl and methylene) in the same regions as the base components, but switched to high or low wavenumbers and absorbance, highlighting the formation of adducts/complexes between the extracts and polymers. The obtained formulations were in the amorphous phase, as confirmed by XRD analysis. AFM analysis emphasized the morphological peculiarities of the extract-polymer nanoformulations. It could be noticed that, in the case of SE-based formulations, the dominant characteristics for SE-PHB and SE-PLGA composition were the formation of random large (SE-PHB) and smaller uniform (SE-PLGA) particles; further on, these particles tended to aggregate in the case of SE-PHB-PLGA. For the CE- and GE-based formulations, the dominant surface morphology was their porosity, generally with small pores, but larger cavities were observed in some cases (CE- and GE-PHB). The highest roughness values at the (8 µm × 8 μm) scale were found for the following samples and succession: CE-PHB < SE-PLGA < SE-PHB-PLGA. In addition, by thermogravimetric analysis, impregnation in the matrix of compression stockings was evaluated, which varied in the following order: CE-polymer > SE-polymer > GE-polymer. In conclusion, nine vegetal extract-polymer nanoformulations were prepared and preliminarily characterized (by advanced physicochemical methods) as a starting point for further optimization, stability studies, and possible use in complex pharmaceutical products.
Collapse
Affiliation(s)
- Andreea Roxana Ungureanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.R.U.); (L.P.); (C.E.G.)
| | - Emma Adriana Ozon
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.R.U.); (L.P.); (C.E.G.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania; (M.A.); (I.A.); (R.-A.M.); (A.R.)
| | - Mihai Anastasescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania; (M.A.); (I.A.); (R.-A.M.); (A.R.)
| | - Irina Atkinson
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania; (M.A.); (I.A.); (R.-A.M.); (A.R.)
| | - Raul-Augustin Mitran
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania; (M.A.); (I.A.); (R.-A.M.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania; (M.A.); (I.A.); (R.-A.M.); (A.R.)
| | - Liliana Popescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.R.U.); (L.P.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.R.U.); (L.P.); (C.E.G.)
| |
Collapse
|
4
|
Santos TDSA, Meccatti VM, Pereira TC, Marcucci MC, Hasna AA, Valera MC, de Oliveira LD, Carvalho CAT. Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp. COATINGS 2023; 13:1579. [DOI: 10.3390/coatings13091579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Enterococcus spp. are a common culprit behind the failure of endodontic treatments, primarily due to their notorious resistance to antimicrobial agents. Considering this challenge, this study was conducted to assess the antimicrobial efficacy of a unique blend of hydroalcoholic extracts sourced from Salvia officinalis and Glycyrrhiza glabra against biofilms formed by Enterococcus faecalis and Enterococcus faecium. The chemical composition of these plant extracts was rigorously characterized, with primary compound quantification achieved through high-performance liquid chromatography (HPLC-DAD) analysis. Additionally, this study determined the minimal bactericidal concentrations of these extracts and evaluated their potential to combat biofilms by quantifying colony-forming units per milliliter (CFU/mL). The findings reveal that the simultaneous application of both extracts yielded additive and synergistic effects against E. faecalis and E. faecium, including both ATCC and clinical strains. Impressively, after a 24 h exposure, these extract combinations demonstrated efficacy comparable to that of a 0.12% chlorhexidine solution, establishing a statistically significant difference from the negative control group. Consequently, the concurrent use of these extracts emerges as a promising alternative antimicrobial strategy for addressing Enterococcus spp. in endodontic treatments, holding substantial potential for clinical applications in this context.
Collapse
Affiliation(s)
- Thaís da Silva Alves Santos
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Vanessa Marques Meccatti
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Marcia Carneiro Valera
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
5
|
Banna BU, Mia R, Hasan MM, Ahmed B, Hasan Shibly MA. Ultrasonic-assisted sustainable extraction and dyeing of organic cotton fabric using natural dyes from Dillenia indica leaf. Heliyon 2023; 9:e18702. [PMID: 37560636 PMCID: PMC10407738 DOI: 10.1016/j.heliyon.2023.e18702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
As a means of preventing environmental damage caused by synthetic dyes, eco-friendly textile dyeing with natural dyes is gaining popularity worldwide. This study focused on the extraction of dyes from the leaf of Dillenia indica (D. indica) tree using an ultrasonic extraction technique and applied on the organic cotton fabrics. The ultrasonic method was used for both extractions of D. indica dyes and dyeing of organic cotton fabrics. Here, the amount of D. indica powder used were 5% and 6.67% for producing light and dark shade, respectively. The investigation of the color fastness to washing, rubbing, and light for the dyed organic cotton fabrics indicated an excellent rating. The spectrophotometric analysis revealed the L* (lightness or darkness), a* (redness or greenness), b* (yellowness or blueness), C* (chroma), h* (hue), R% (reflectance), and K/S (color strength) values, which accurately represented the shade of the dyed organic cotton fabric. To understand the interaction between D. indica dye and organic cotton fabrics, different characterization including, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were performed. The characterization outcomes confirmed the successful deposition of D. indica dyes on the organic cotton fabrics. The other comparable testing results such as bursting strength, air permeability, and thermogravimetric analysis (TGA) of dyed and undyed organic cotton fabrics were in the acceptable range. One of the important findings of this research was no chemicals were utilized during the extraction and dyeing of organic cotton fabrics. This process can be referred to as completely chemical-free and advantageous for the environment because no chemicals were needed during extraction or dyeing. Therefore, the natural dye extracted from D. indica is extremely promising and could be a viable option for the sustainable dyeing of cotton fabrics in the textile dyeing industry.
Collapse
Affiliation(s)
- Burhan Uddin Banna
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Rony Mia
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Md. Mahabub Hasan
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Bulbul Ahmed
- National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Repon MR, Islam T, Islam T, Ghorab AE, Rahman MM. Cleaner pathway for developing bioactive textile materials using natural dyes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48793-48823. [PMID: 36879092 DOI: 10.1007/s11356-023-26131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Bioactive textile materials are a promising field in the development of functional textiles. The integration of bioactive compounds, such as natural dyes, into textiles offers a range of benefits, including UV protection, anti-microbial properties, and insect repellency. Natural dyes have been shown to have bioactivity, and their integration into textiles has been extensively studied. The application of natural dyes on textile substrates will be an advantage for their inherent functional properties along with their non-toxic and eco-friendly nature. This review addresses the effect of natural dyes on surface modification of most used natural and synthetic fibers and its subsequent effects on their anti-microbial, UV protection and insect repellent properties with natural dyes. Natural dyes have proved to be environmentally friendly in an attempt to improve bioactive functions in textile materials. This review provides a clear view of sustainable resources for the dyeing and finishing of textiles to develop a cleaner pathway of bioactive textiles using natural dyes. Furthermore, the dye source, advantages and disadvantages of natural dye, main dye component, and chemical structure are listed. However, there is still a need for interdisciplinary research to further optimize the integration of natural dyes into textiles and to improve their bioactivity, biocompatibility, and sustainability. The development of bioactive textile materials using natural dyes has the potential to revolutionize the textile industry and to provide a range of benefits to consumers and society.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ahmed El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Aguda O, Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21 st century. Heliyon 2022; 8:e09761. [PMID: 35789866 PMCID: PMC9249839 DOI: 10.1016/j.heliyon.2022.e09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
The textile industry can benefit from nanotechnology as new properties are conferred on functionalized nanotextiles beyond what a fabric can traditionally offer. These properties include extermination of microorganisms by nanotextiles to curtail their growth and dissemination in the environment and in healthcare facilities. The emergence and thriving of multi-drug resistance (MDR) phenomenon among microbes are threats at achieving good health and well-being (goal 3) of sustainable development goals (SDG) of UN. In addition, MDR strains emerge at a higher rate than the frequency of discovery and production of potent antimicrobial drugs. Therefore, there is need for innovative approach to tackle MDR. Among recent innovations is functionalization of textiles with metal nanoparticles to kill microorganisms. This paper explores strategies in nanotextile production to combat emerging diseases in the 21st century. We discussed different nanotextiles with proven antimicrobial activities, and their applications as air filters, sportswear, personal wears, nose masks, health care and medical fabrics. This compendium highlights frontiers of applications of antimicrobial nanotextiles that can extend multidisciplinary research endeavours towards achieving good health and well-being. Until now, there exists no review on exploitation of nanotextiles to combat MDR pathogens as included in this report.
Collapse
Affiliation(s)
- O.N. Aguda
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
| | - A. Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| |
Collapse
|