1
|
Góral-Kowalczyk M, Grządka E, Orzeł J, Góral D, Skrzypek T, Kobus Z, Nawrocka A. Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry ( Fragaria × ananassa Duchesne) Leaf Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2515. [PMID: 38893778 PMCID: PMC11174040 DOI: 10.3390/ma17112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.
Collapse
Affiliation(s)
- Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Agnieszka Nawrocka
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
2
|
Bromberg L, Magariños B, Concheiro A, Hatton TA, Alvarez-Lorenzo C. Nonleaching Biocidal N-Halamine-Functionalized Polyamine-, Guanidine-, and Hydantoin-Based Coatings. Ind Eng Chem Res 2024; 63:6268-6278. [PMID: 38617110 PMCID: PMC11010268 DOI: 10.1021/acs.iecr.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Fibrous materials with inherent antimicrobial properties can help in real-time deactivation of microorganisms, enabling multiple uses while reducing secondary infections. Coatings with antiviral polymers enhance the surface functionality for existing and potential future pandemics. Herein, we demonstrated a straightforward route toward biocidal surface creation using polymers with nucleophilic biguanide, guanidine, and hydantoin groups that are covalently attached onto a solid support. Biocidal poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) were introduced for coating applications along with commercially available polyvinylamine (PVAm) and poly(hexamethylene biguanide) (PHMB). Nonleaching coatings were created by first fabricating bifunctional siloxane or isocyanate precursor coatings on the cotton, nylon-cotton, and glass fiber fabric, followed by the polymer attachment. The developed grafting methods ensured the stability of the coating and the reuse of the material while maintaining the biocidal properties. Halogenation of polymer-coated fabric was conducted by aqueous solutions of sodium hypochlorite or in situ generation of hypobromous acid (HOBr), resulting in surfaces coated by N-halamines with high contents of active > N-Cl or > N-Br groups. The polymer-coated fabrics were stable in multiple laundry cycles and maintained hydrophilic character after coating and halogenation. Halogenated polymer-coated fabrics completely inactivated human respiratory coronavirus based on a contact-killing mechanism and were shown to be reusable after recharging with bromine or chlorine.
Collapse
Affiliation(s)
- Lev Bromberg
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Beatriz Magariños
- Department
of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Angel Concheiro
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma
Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS),
and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Carmen Alvarez-Lorenzo
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma
Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS),
and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
3
|
Tosif MM, Bains A, Dhull SB, Chawla P, Goksen G. Effect of Aloe vera and carboxymethyl cellulose-derived binary blend edible coating on the shelf life of fresh-cut apple. Food Sci Nutr 2023; 11:6987-6999. [PMID: 37970395 PMCID: PMC10630825 DOI: 10.1002/fsn3.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 11/17/2023] Open
Abstract
In recent years, the demand and market for minimally processed fruits are increasing worldwide. Fresh-cut apples are extremely sensitive to environmental factors including oxygen, temperature, and microorganisms in resulting the browning of apples. Therefore, in this study, different concentration of blended edible-coating solution was prepared using Aloe vera and carboxymethyl cellulose (1:1, 1:2, 2:1, 3:3, 3:2, 4:2, 2:4, 3:4, and 4:3, respectively). Lease particle size (101.74 ± 0.67 nm) of the coating solution was observed with 3% A. vera and 2% carboxymethyl cellulose (CMC). Afterward, the shelf life of the apples was evaluated for 10 days at refrigeration condition. Results showed that a significant difference was found in weight loss of coated (6.42%-10.26%) and uncoated apples (8.12%-15.32%) for 2-10 days. Moreover, the titrable acidity of the cut apples increased during the storage time. Rheological data emerged that the viscosity of the coating solution decreases with the increasing temperature from 0 to 50°C. Fourier transform infrared spectroscopy data confirmed the presence of hydroxyl group (-OH), C=O, C-O, and N-H banding in the A. vera, CMC, and blend-coating solution. The blend solution indicated excellent antimicrobial efficiency. Total phenolic content of coated and uncoated apples at 0 day was 737.55 mg GAE kg-1 for uncoated and 717.88 mg GAE kg-1, respectively. Whereas, aerobic and psychrotrophic bacteria counts for edible coated apples significantly lower than control apples. For coated apples, aerobic and psychrotrophic bacteria counts were 1.59 ± 0.84 and 1.25 ± 0.49 log CFU g-1 were 4.26 ± 0.67 and 2.68 ± 0.22 log CFU g-1 at 10th day, respectively. Overall, it can be inferred that blend of A. vera and carboxymethyl cellulose could be used as a nontoxic potential anti-browning and antimicrobial component for the enhancement of the shelf life and additional nutritional value of fresh-cut apples.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
4
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
5
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
6
|
Electroless Deposits of ZnO and Hybrid ZnO/Ag Nanoparticles on Mg-Ca0.3 Alloy Surface: Multiscale Characterization. COATINGS 2022. [DOI: 10.3390/coatings12081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ZnO and hybrid of ZnO/Ag structures in the nanometer size were electroless deposited on the Mg-Ca0.3 alloy surface, achieved from aqueous solutions (10−3 M at 21 °C) of ZnO (suspension), Zn(NO3)2 and AgNO3. The surface characterization of the deposits was carried out by Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-Ray Photoelectron Spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Visible and Raman spectroscopy. The nanoparticles (NPs) area size distribution analysis revealed that the average of ZnO-NPs was ~85 nm. Likewise, the Ag-NPs of electroless deposits had an average area size of ~100 nm and nucleated in the vicinity of ZnO-NPs as Ag+ ions have been attracted by the negatively charged O2− atoms of the Zn-O dipole. The ZnO-NPs had the wurtzite structure, as indicated by Raman spectroscopy analysis and XRD complementary analysis. The UV-Visible spectroscopy analysis gave a peak at ~320 nm associated with the decrease in the imaginary part (k) of the refractive index of Ag-NPs. On the Mg-Ca0.3 surface, MgO, Mg(OH)2 and MgCO3 are present due to the Mg-matrix. XRD spectra of Ag-NPs indicated the presence of planes arranged with the FCC hexagonal structure. The reported hybrid ZnO/Ag electroless deposits of NPs are of interest for temporary implant devices, providing antibacterial properties to Mg-Ca0.3 surface, a widely used biodegradable material.
Collapse
|