1
|
Joy F, Devasia J, Nizam A, Lakshmaiah VV, Krishna SBN. Fungi-Templated Silver Nanoparticle Composite: Synthesis, Characterization, and Its Applications. APPLIED SCIENCES 2023; 13:2158. [DOI: 10.3390/app13042158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The self-assembly of nanoparticles on living bio-templates is a promising synthetic methodology adopted for synthesizing nano/microstructures with high efficiency. Therefore, the method of bio-templating offers various advantages in controlling the geometries of nano/microstructures, thereby increasing the efficiency of the synthesized material towards various functional applications. Herein, we utilized a filamentous fungus (Sclerotium rolfsii) as a soft bio-template to generate silver nanoparticle (AgNP) microtubules adhering to the fungal hyphae. The resulting composite combines the unique properties of silver nanoparticles with the biological activity of the fungi. The 3D fungal hyphae–silver nanoparticle (FH-AgNP) composite was characterized using SEM, elemental analysis, and the X-ray diffraction technique. Additionally, to highlight the functional application of the synthesized composite, dye degradation studies of methylene blue under visible light was effectuated, and a percentage degradation of 67.86% was obtained within 60 min, which highlights the potent catalytic activity of FH-AgNPs in dye degradation. Further, the antibacterial study of the composite was carried out against the bacterium Escherichia coli, and it was found that 200 μg of the composite exhibited maximum antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. Overall, fungi-templated silver nanoparticle composites are a promising area of research due to their combination of biological activity and unique physical and chemical properties.
Collapse
Affiliation(s)
- Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | | | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
2
|
Zeng Y, Ananth R, Dill TJ, Rodarte A, Rozin MJ, Bradshaw N, Brown ER, Tao AR. Metasurface-Enhanced Raman Spectroscopy (mSERS) for Oriented Molecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32598-32607. [PMID: 35816614 DOI: 10.1021/acsami.2c01656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a widely used sensing technique for ultrasensitivity chemical sensing, biomedical detection, and environmental analysis. Because SERS signal is proportional to the fourth power of the local electric field, several SERS applications have focused on the design of plasmonic nanogaps to take advantage of the extremely strong near-field enhancement that results from plasmonic coupling, but few designs have focused on how SERS detection is affected by molecular orientation within these nanogaps. Here, we demonstrate a nanoparticle-on-metal metasurface designed for near-perfect optical absorption as a platform for Raman detection of highly oriented molecular analytes, including two-dimensional materials and aromatic molecules. This metasurface platform overcomes challenges in nanoparticle aggregation, which commonly leads to low or fluctuating Raman signals in other colloidal nanoparticle platforms. Our metasurface-enhanced Raman spectroscopy (mSERS) platform is based on a colloidal Langmuir-Schaefer deposition, with up to 32% surface coverage density of nanogaps across an entire sensor chip. In this work, we perform both simulations of the local electric field and experimental characterization of the mSERS signal obtained for oriented molecular layers. We then demonstrate this mSERS platform for the quantitative detection of the drinking-water toxin polybrominated diphenyl ether (BDE-15), with a limit of detection of 0.25 μM under 530 μW excitation. This detection limit is comparable to other SERS-based sensors operating at laser powers over 3 orders of magnitude higher, indicating the promise of our mSERS platform for nondestructive and low-level analyte detection.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Riddhi Ananth
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Tyler J Dill
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
| | - Andrea Rodarte
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
| | - Matthew J Rozin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nathan Bradshaw
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
| | - Eric R Brown
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
| | - Andrea R Tao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive MC 0448, La Jolla, California 92093-0448, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Ponlamuangdee K, Rattanabut C, Viriyakitpattana N, Roeksrungruang P, Karn-Orachai K, Pimalai D, Bamrungsap S. Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1765-1773. [PMID: 35470360 DOI: 10.1039/d2ay00236a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we describe a simple and cost-effective fabrication of a paper-based SERS substrate by coating poly(diallyldimethylammonium chloride) (PDADMAC) and gold nanostars (AuNSs) on the filter paper using a vacuum filtration system. The paper-based SERS substrates were fabricated and ready to be used within an hour without any complicated equipment or processes. The cationic polymer, PDADAMAC, was pretreated on the filter paper to improve the absorbability of negatively charged AuNSs through electrostatic interaction. The PDADMAC/AuNS paper significantly intensified the SERS signal of 4-mercaptobenzoic acid (4-MBA) compared to that of pure AuNS-coated paper due to the high density of AuNSs absorbed on the SERS substrate. The PDADMAC/AuNS paper substrate provided a SERS enhancement factor (EF) of 1.08 × 107 with a low detection limit of 1 nM 4-MBA. The substrate shows excellent spot-to-spot reproducibility with a relative standard deviation (RSD) of 5.03%, and substrate-to-substrate reproducibility with an RSD of 3.20% for the Raman shift at 1080 cm-1. The paper substrate was then applied for the rapid detection of pesticides with a low detection limit of 0.51 μM (0.13 ppm) for paraquat, and 0.38 μM (0.09 ppm) for thiram, using a handheld Raman spectrometer. The development of this simple and cost-effective paper-based SERS substrate, and its applications for on-site monitoring of pesticides, could be beneficial for food security and environmental safety.
Collapse
Affiliation(s)
- Kanyawan Ponlamuangdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Chanoknan Rattanabut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Nopparat Viriyakitpattana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
4
|
Fontes AM, Oliveira C, Bargiela P, da Rocha MDGC, Geris R, da Silva AF, Gangishetty MK, Scott RWJ, Malta M. Unveiling the Surface and the Ultrastructure of Palladized Fungal Biotemplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12961-12971. [PMID: 34714089 DOI: 10.1021/acs.langmuir.1c02023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, two biosystems based on filamentous fungi and Pd nanoparticles (NPs) were synthesized and structurally characterized. In the first case, results concerning the integration and distribution of Pd-NPs on Phialomyces macrosporus revealed that nanoparticles are accumulated on the cell wall, keeping the cytoplasm isolated from abiotic particles. However, the Penicillium sp. species showed an unexpected internalization of Pd-NPs in the fungal cytosol, becoming a promising biosystem to further studies of in vivo catalytic reactions. Next, we report a new solution-based strategy to prepare palladized biohybrids through sequential reduction of Pd2+ ions over previously harvested fungus/Au-NP composites. The chemical composition and the morphology of the biohybrid surface were characterized using a combination of scanning electron microscopy, transmission electron microscopy, and photoelectron spectroscopy. The deposition of Pd0 over the fungal surface produced biohybrids with a combination of Au and Pd in the NPs. Interestingly, other chemical species such as Au+ and Pd2+ are also observed on the outermost wall of microorganisms. Finally, the application of A. niger/AuPd-NP biohybrids in the 3-methyl-2-buten-1-ol hydrogenation reaction is presented for the first time. Biohybrids with a high fraction of Pd0 are active for this catalytic reaction.
Collapse
Affiliation(s)
- Adriana M Fontes
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Camila Oliveira
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Pascal Bargiela
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Maria da G C da Rocha
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Regina Geris
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Antonio F da Silva
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| | - Mahesh K Gangishetty
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
- Department of Chemistry and Physics, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| |
Collapse
|
5
|
Gorup LF, Perlatti B, Kuznetsov A, Nascente PADP, Wendler EP, Dos Santos AA, Padilha Barros WR, Sequinel T, Tomitao IDM, Kubo AM, Longo E, Camargo ER. Stability of di-butyl-dichalcogenide-capped gold nanoparticles: experimental data and theoretical insights. RSC Adv 2020; 10:6259-6270. [PMID: 35495990 PMCID: PMC9049692 DOI: 10.1039/c9ra07147d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/21/2019] [Indexed: 12/31/2022] Open
Abstract
Metals capped with organochalcogenides have attracted considerable interest due to their practical applications, which include catalysis, sensing, and biosensing, due to their optical, magnetic, electrochemical, adhesive, lubrication, and antibacterial properties. There are numerous reports of metals capped with organothiol molecules; however, there are few studies on metals capped with organoselenium or organotellurium. Thus, there is a gap to be filled regarding the properties of organochalcogenide systems which can be improved by replacing sulfur with selenium or tellurium. In the last decade, there has been significant development in the synthesis of selenium and tellurium compounds; however, it is difficult to find commercial applications of these compounds because there are few studies showing the feasibility of their synthesis and their advantages compared to organothiol compounds. Stability against oxidation by molecular oxygen under ambient conditions is one of the properties which can be improved by choosing the correct organochalcogenide; this can confer important advantages for many more suitable applications. This paper reports the successful synthesis and characterization of gold nanoparticles functionalized with organochalcogenide molecules (dibutyl-disulfide, dibutyl-diselenide and dibutyl-ditelluride) and evaluates the oxidation stability of the organochalcogenides. Spherical gold nanoparticles with diameters of 24 nm were capped with organochalcogenides and were investigated using X-ray photoelectron spectroscopy (XPS) to show the improved stability of organoselenium compared with organothiol and organotellurium. The results suggest that the organoselenium is a promising candidate to replace organothiol because of its enhanced stability towards oxidation by molecular oxygen under ambient conditions and its slow oxidation rate. The observed difference in the oxidation processes, as discussed, is also in agreement with theoretical calculations.
Collapse
Affiliation(s)
- Luiz Fernando Gorup
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
- Faculty of Exact Sciences and Technology (FACET), Department of Chemistry, Federal University of Grande Dourados Rodovia Dourados, Itahum, Km 12 - Unidade II, Caixa Postal: 364, Cep: 79.804-970 Dourados MS 79804-970 Brazil +55 1698100 3030
| | - Bruno Perlatti
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
| | - Aleksey Kuznetsov
- Departamento de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María Av. Santa María 6400 Vitacura Santiago Chile
| | - Pedro Augusto de Paula Nascente
- Department of Materials Engineering, UFSCar-Federal University of Sao Carlo Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-905 Brazil
| | - Edison Perevalo Wendler
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
| | | | - Willyam Róger Padilha Barros
- Faculty of Exact Sciences and Technology (FACET), Department of Chemistry, Federal University of Grande Dourados Rodovia Dourados, Itahum, Km 12 - Unidade II, Caixa Postal: 364, Cep: 79.804-970 Dourados MS 79804-970 Brazil +55 1698100 3030
| | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Department of Chemistry, Federal University of Grande Dourados Rodovia Dourados, Itahum, Km 12 - Unidade II, Caixa Postal: 364, Cep: 79.804-970 Dourados MS 79804-970 Brazil +55 1698100 3030
| | - Isabela de Macedo Tomitao
- Faculty of Exact Sciences and Technology (FACET), Department of Chemistry, Federal University of Grande Dourados Rodovia Dourados, Itahum, Km 12 - Unidade II, Caixa Postal: 364, Cep: 79.804-970 Dourados MS 79804-970 Brazil +55 1698100 3030
| | - Andressa Mayumi Kubo
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
| | - Elson Longo
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
| | - Emerson Rodrigues Camargo
- LIEC - Department of Chemistry, UFSCar-Federal University of São Carlos Rod. Washington Luis km 235, CP 676 São Carlos SP 13565-9905 Brazil
| |
Collapse
|
6
|
Malinovskis U, Poplausks R, Erts D, Ramser K, Tamulevičius S, Tamulevičienė A, Gu Y, Prikulis J. High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E531. [PMID: 30987127 PMCID: PMC6523383 DOI: 10.3390/nano9040531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023]
Abstract
This study demonstrates a new, robust, and accessible deposition technique of metal nanoparticle arrays (NPAs), which uses nanoporous anodic alumina (NAA) as a template for capillary force-assisted convective colloid (40, 60, and 80 nm diameter Au) assembly. The NPA density and nanoparticle size can be independently tuned by the anodization conditions and colloid synthesis protocols. This enables production of non-touching variable-density NPAs with controllable gaps in the 20-60 nm range. The NPA nearest neighbor center distance in the present study was fixed to 100 nm by the choice of anodization protocol. The obtained Au NPAs have the resonant scattering maxima in the visible spectral range, with a refractometric sensitivity, which can be tuned by the variation of the array density. The thickness of the NAA layer in an Aluminum-NAA-NPA multilayer system enables further tuning of the resonance frequency and optimization for use with specific molecules, e.g., to avoid absorption bands. Applicability of the mentioned multilayers for colorimetric refractive index (RI) sensing is demonstrated. Their use as Surface-Enhanced Raman Scattering (SERS) substrates is tested using hemoglobin as a biological probe molecule.
Collapse
Affiliation(s)
- Uldis Malinovskis
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
| | - Raimonds Poplausks
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
| | - Donats Erts
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
| | - Kerstin Ramser
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden.
| | - Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, 59 K. Baršausko St., LT-51423 Kaunas, Lithuania.
| | - Asta Tamulevičienė
- Institute of Materials Science, Kaunas University of Technology, 59 K. Baršausko St., LT-51423 Kaunas, Lithuania.
| | - Yesong Gu
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Juris Prikulis
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
| |
Collapse
|