1
|
Zhou L, Ji W, Dicolandrea T, Finlay D, Supp D, Boyce S, Wei K, Kadekaro AL, Zhang Y. An improved human skin explant culture method for testing and assessing personal care products. J Cosmet Dermatol 2023; 22:1585-1594. [PMID: 36606380 DOI: 10.1111/jocd.15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cultured human skin models have been widely used in the evaluation of dermato-cosmetic products as alternatives to animal testing and expensive clinical testing. The most common in vitro skin culture approach is to maintain skin biopsies in an airlifted condition at the interface of the supporting culture medium and the air phase. This type of ex vivo skin explant culture is not, however, adequate for the testing of cleansing products, such as shampoos and body washes. One major deficiency is that cleansing products would not remain confined on top of the epidermis and have a high chance of running off toward the dermal side, thus compromising the experimental procedure and data interpretation. MATERIALS AND METHODS Here, we describe an improved ex vivo method for culturing full-thickness human skin for the effective testing and evaluation of skin care products by topical application. RESULTS This newly developed ex vivo human skin culture method has the ability to maintain healthy skin tissues for up to 14 days in culture. Importantly, the model provides a quick and safe way to evaluate skin care products at different time points after single or repetitive topical applications using a combined regimen of leave-on and wash-off. We found that the results obtained using the new skin culture method are reproducible and consistent with the data collected from clinical testing. CONCLUSION Our new ex vivo skin explant method offers a highly efficient and cost-effective system for the evaluation and testing of a variety of personal care products and new formulations.
Collapse
Affiliation(s)
- Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wei Ji
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | | | - Deborah Finlay
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Dorothy Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio, USA.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven Boyce
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio, USA.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Karl Wei
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Metz JK, Hittinger M, Lehr CM. In vitro tools for orally inhaled drug products-state of the art for their application in pharmaceutical research and industry and regulatory challenges. IN VITRO MODELS 2021; 1:29-40. [PMID: 38624975 PMCID: PMC8688684 DOI: 10.1007/s44164-021-00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
The drug development process is a lengthy and expensive challenge for all involved players. Experience with the COVID-19 pandemic underlines the need for a rapid and effective approval for treatment options. As essential prerequisites for successful drug approval, a combination of high-quality studies and reliable research must be included. To this day, mainly in vivo data are requested and collected for assessing safety and efficacy and are therefore decisive for the pre-clinical evaluation of the respective drug. This review aims to summarize the current state of the art for safety and efficacy studies in pharmaceutical research and industry to address the relevant regulatory challenges and to provide an outlook on implementing more in vitro methods as alternative to animal testing. While the public demand for alternative methods is becoming louder, first examples have meanwhile found acceptance in relevant guidelines, e.g. the OECD guidelines for skin sensitizer. Besides ethically driven developments, also the rather low throughput and relatively high costs of animal experiments are forcing the industry towards the implementation of alternative methods. In this context, the development of orally inhaled drug products is particularly challenging due to the complexity of the lung as biological barrier and route of administration. The replacement of animal experiments with focus on the lungs requires special designed tools to achieve predictive data. New in vitro test systems of increasing complexity are presented in this review. Limits and advantages are discussed to provide some perspective for a future in vitro testing strategy for orally inhaled drug products. Graphical abstract
Collapse
Affiliation(s)
- Julia Katharina Metz
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Corsini E, Gibbs S, Roggen E, Kimber I, Basketter DA. Skin Sensitization Tests: The LLNA and the RhE IL-18 Potency Assay. Methods Mol Biol 2021; 2240:13-29. [PMID: 33423223 DOI: 10.1007/978-1-0716-1091-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contact allergy is of considerable importance to the toxicologist, and regulatory authorities worldwide require testing for skin sensitization potential and appropriate hazard labeling to enable management of the risk to human health. Although traditionally the identification of skin-sensitizing chemicals has been carried out using animal models, in Europe legislative changes have promoted, and now require, the use of non-animal methods (i.e., Cosmetic Directive, REACH). Several in vitro alternatives for hazard identification have now been validated, but do not provide information on the potency of a skin sensitizer. Here, we describe an animal model, the local lymph node assay (LLNA), and an in vitro model, the RhE IL-18 potency assay, in the context of the identification and potency classification of skin sensitizers. These two assays have been chosen among the different available tests as representative of an alternative in vivo model (the LLNA) and a promising in vitro method with the potential of both hazard identification and potency classification.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.
| | - Sue Gibbs
- Department of Dermatology, VU University Medical Centre, ACTA, Amsterdam, The Netherlands
- Department of Oral Cell Biology, ACTA, Amsterdam, The Netherlands
| | - Erwin Roggen
- 3Rs Management and Consultancy, Kobenhavn, Denmark
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | |
Collapse
|
4
|
Galbiati V, Gibbs S, Roggen E, Corsini E. Development of an In Vitro Method to Estimate the Sensitization Induction Level of Contact Allergens. ACTA ACUST UNITED AC 2018; 75:20.15.1-20.15.20. [DOI: 10.1002/cptx.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valentina Galbiati
- Department of Environmental Science and Policy, Università degli Studi di Milano Milan Italy
| | - Sue Gibbs
- Department of Dermatology, VU University Medical Centre Amsterdam The Netherlands
- Department of Oral Cell Biology, ACTA Amsterdam The Netherlands
| | | | - Emanuela Corsini
- Department of Environmental Science and Policy, Università degli Studi di Milano Milan Italy
| |
Collapse
|
5
|
Corsini E, Casula M, Tragni E, Galbiati V, Pallardy M. Tools to investigate and avoid drug-hypersensitivity in drug development. Expert Opin Drug Discov 2018; 13:425-433. [PMID: 29405076 DOI: 10.1080/17460441.2018.1437141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Drug hypersensitivity reactions (DHRs) are common adverse effects of pharmaceuticals that clinically resemble allergies, and which are becoming an important burden to healthcare systems. Alongside accurate diagnostic techniques, tools which can predict potential drug-inducing hypersensitivity reactions in the pre-clinical phase are critical. Despite the important adverse reactions linked to immune-mediated hypersensitivity, at present, there are no validated or required in vivo or in vitro methods to screen the sensitizing potential of drugs and their metabolites in the pre-clinical phase. Areas covered: Enhanced prediction in preclinical safety evaluation is extremely important. The purpose of this review is to assess the state of the art of tools available to assess the allergenic potential of drugs and to highlight our current understanding of the molecular mechanisms underlying inappropriate immune activation. Expert opinion: The knowledge that allergenic drugs share common mechanisms of immune cell activation with chemical allergens, and of the definition of the mechanistic pathway to adverse outcomes, can enhance targeting toxicity testing in drug development and hazard assessment of hypersensitivity. Additional efforts and extensive resources are necessary to improve preclinical testing methodologies, including optimization, better design and interpretation of data.
Collapse
Affiliation(s)
- Emanuela Corsini
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Manuela Casula
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Elena Tragni
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Valentina Galbiati
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Marc Pallardy
- c Inflammation, Chemokines and Immunopathology , INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
6
|
Alternative Methods to Animal Testing for the Safety Evaluation of Cosmetic Ingredients: An Overview. COSMETICS 2017. [DOI: 10.3390/cosmetics4030030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The safety of cosmetics sold in Europe is based on the safety evaluation of each individual ingredient conducted by those responsible for putting the product on the market. However, those substances for which some concern exists with respect to human health (e.g., colorants, preservatives, UV-filters, nanomaterials) are evaluated at the European Commission level by a scientific committee, currently called the Scientific Committee on Consumer Safety (SCCS). According to the Cosmetics Regulation (European Commission, 2009), it is prohibited in the European Union (EU) to market cosmetic products and ingredients that have been tested on animals. However, the results of studies performed before the ban continue to be accepted. In the current study, we evaluated the use of in vitro methods in the dossiers submitted to the SCCS in the period between 2013 and 2016 based on the published reports issued by the scientific committee, which provides a scientific opinion on these dossiers. The results of this evaluation were compared with those of an evaluation conducted four years previously. We found that, despite a slight increase in the number of studies performed in vitro, the majority of studies submitted to the SCCS is still done principally in vivo and correspond to studies performed before the ban.
Collapse
|
7
|
|
8
|
Comparative Analysis of Four Facial Foundation Lotions with Reference to Its Antioxidant Richness and Bio-Safety. COSMETICS 2017. [DOI: 10.3390/cosmetics4020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Galbiati V, Papale A, Marinovich M, Gibbs S, Roggen E, Corsini E. Development of an in vitro method to estimate the sensitization induction level of contact allergens. Toxicol Lett 2017; 271:1-11. [PMID: 28189648 DOI: 10.1016/j.toxlet.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
No standardized in vitro methods to assess potency of skin sensitizers are available. Recently, we standardized a procedure which combines the epidermal equivalent potency assay with assessment of IL-18 to provide a single test for identification and classification of skin sensitizers. This current study aimed to extend tested chemicals, and to provide a simple in vitro method for estimation of the expected sensitization induction level interpolating in vitro EC50 and IL-18 SI2 values to predict LLNA EC3 and/or human NOEL from standards curves generated using reference contact allergens. Reconstituted human epidermis was challenged with 14 chemicals not previously tested benzoquinone, chlorpromazine, chloramine T, benzyl salicylate, diethyl maleate, dihydroeugenol, 2,4-dichloronitrobenzene, benzyl cinnamate, imidazolidinyl urea, and limonene as contact sensitizers while benzyl alcohol, isopropanol, dimethyl isophthalate and 4-aminobenzoic acid as non-sensitizers in the LLNA. Where for benzyl salicylate and benzyl cinnamate no sensitization was observed in human predictive studies, positive responses to benzyl alcohol and dimethyl isophthalate were reported. The proposed method correlates better with human data, correctly predicting substances incorrectly classified by LLNA. With the exception of benzoquinone (interference with both MTT and IL-18 ELISA), and chloramine T (underestimated in the interpolation), a good estimation of LLNA EC3 and in vivo available human NOEL values was obtained.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Angela Papale
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Sue Gibbs
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands; Department of Oral Cell Biology, ACTA, Amsterdam, The Netherlands
| | | | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Bergers LIJC, Reijnders CMA, van den Broek LJ, Spiekstra SW, de Gruijl TD, Weijers EM, Gibbs S. Immune-competent human skin disease models. Drug Discov Today 2016; 21:1479-1488. [PMID: 27265772 DOI: 10.1016/j.drudis.2016.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
All skin diseases have an underlying immune component. Owing to differences in animal and human immunology, the majority of drugs fail in the preclinical or clinical testing phases. Therefore animal alternative methods that incorporate human immunology into in vitro skin disease models are required to move the field forward. This review summarizes the progress, using examples from fibrosis, autoimmune diseases, psoriasis, cancer and contact allergy. The emphasis is on co-cultures and 3D organotypic models. Our conclusion is that current models are inadequate and future developments with immune-competent skin-on-chip models based on induced pluripotent stem cells could provide a next generation of skin models for drug discovery and testing.
Collapse
Affiliation(s)
| | | | | | - Sander W Spiekstra
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ester M Weijers
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
|
12
|
|