1
|
Michalak M, Pilawa B, Ramos P, Glinka R. Effect of UV Radiation and Temperature on Radical Scavenging Activity of Hippophaë rhamnoides L. and Vaccinium oxycoccos L. Fruit Extracts. Int J Mol Sci 2024; 25:9810. [PMID: 39337296 PMCID: PMC11432430 DOI: 10.3390/ijms25189810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
New active ingredients, including those of plant origin, which could protect the skin against various harmful factors, such as UV radiation and free radicals responsible for skin ageing, are still being sought. The present study was focused on the antioxidant activity of Hippophaë rhamnoides L. and Vaccinium oxycoccos L. fruit glycolic extracts. Investigations were also carried out to evaluate the effect of UVA radiation and the storage of the sea buckthorn and European cranberry extracts at an elevated temperature of 50 °C on their interactions with free radicals. The kinetics of the interactions of the extracts with DPPH were assessed using electron paramagnetic resonance (EPR) spectroscopy. The sea buckthorn and European cranberry extracts quench the EPR signal of DPPH free radicals, which indicates their antioxidant potential. The EPR method further showed that a mixture of sea buckthorn and cranberry extracts in a volume ratio of 2:1 was more potent in quenching free radicals compared to a mixture of these extracts in a ratio of 1:2. Our findings demonstrate that long-term UVA radiation exposure reduces the ability of sea buckthorn and cranberry extracts to interact with free radicals. Moreover, storage at elevated temperatures does not affect the interaction of sea buckthorn extract with free radicals, while it alters the ability of cranberry extract to interact with free radicals. This study has demonstrated that an important factor in maintaining the ability to scavenge radicals is the storage of raw materials under appropriate conditions. H. rhamnoides and V. oxycoccos extracts can be used as valuable raw materials with antioxidant properties in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Pharmaceutical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland
| | - Barbara Pilawa
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Ramos
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 41-200 Sosnowiec, Poland
| | - Ryszard Glinka
- Higher School of Social Sciences in Lublin, 20-102 Lublin, Poland
| |
Collapse
|
2
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
3
|
Chen W, Yang J, Huang N, Zhang Q, Zhong Y, Yang H, Liu W, Yue Y. Effect of combined treatments of electron beam irradiation with antioxidants on the microbial quality, physicochemical characteristics and volatiles of vacuum-packed fresh pork during refrigerated storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
5
|
Carotenoids in Human SkinIn Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants (Basel) 2022; 11:antiox11081451. [PMID: 35892651 PMCID: PMC9394334 DOI: 10.3390/antiox11081451] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The antioxidant system of the human body plays a crucial role in maintaining redox homeostasis and has an important protective function. Carotenoids have pronounced antioxidant properties in the neutralization of free radicals. In human skin, carotenoids have a high concentration in the stratum corneum (SC)-the horny outermost layer of the epidermis, where they accumulate within lipid lamellae. Resonance Raman spectroscopy and diffuse reflectance spectroscopy are optical methods that are used to non-invasively determine the carotenoid concentration in the human SC in vivo. It was shown by electron paramagnetic resonance spectroscopy that carotenoids support the entire antioxidant status of the human SC in vivo by neutralizing free radicals and thus, counteracting the development of oxidative stress. This review is devoted to assembling the kinetics of the carotenoids in the human SC in vivo using non-invasive optical and spectroscopic methods. Factors contributing to the changes of the carotenoid concentration in the human SC and their influence on the antioxidant status of the SC in vivo are summarized. The effect of chemotherapy on the carotenoid concentration of the SC in cancer patients is presented. A potential antioxidant-based pathomechanism of chemotherapy-induced hand-foot syndrome and a method to reduce its frequency and severity are discussed.
Collapse
|
6
|
Alnemari RM, Brüßler J, Keck CM. Assessing the Oxidative State of the Skin by Combining Classical Tape Stripping with ORAC Assay. Pharmaceuticals (Basel) 2022; 15:ph15050520. [PMID: 35631347 PMCID: PMC9146784 DOI: 10.3390/ph15050520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
The antioxidant barrier system of the skin acts as the main defence against environmental pro-oxidants. Impaired skin oxidative state is linked to unhealthy conditions such as skin autoimmune diseases and cancer. Thus, the evaluation of the overall oxidative state of the skin plays a key role in further understanding and prevention of these disorders. This study aims to present a novel ex vivo model to evaluate the skin oxidative state by the measurement of its antioxidant capacity (AOC). For this the ORAC assay was combined with classical tape stripping and infrared densitometry to evaluate the oxidative state of the stratum corneum (SC). Outcomes implied the suitability of the used model to determine the intrinsic antioxidant capacity (iAOC) of the skin. The average iAOC of untreated skin was determined as 140 ± 7.4 µM TE. Skin exposure to UV light for 1 h reduced the iAOC by about 17%, and exposure for 2 h decreased the iAOC by about 30%. Treatment with ascorbic acid (AA) increased the iAOC in a dose-dependent manner and reached an almost two-fold iAOC when 20% AA solution was applied on the skin. The application of coenzyme Q10 resulted in an increase in the iAOC at low doses but decreased the iAOC when doses > 1% were applied on the skin. The results show that the combination of classical tape stripping and ORAC assay is a cost-effective and versatile method to evaluate the skin oxidative state and the pro-oxidate and antioxidative effects of topical skin treatments on the iAOC of the skin. Therefore, the model can be considered to be a valuable tool in skin research.
Collapse
|
7
|
Meinke MC, Busch L, Lohan SB. Wavelength, dose, skin type and skin model related radical formation in skin. Biophys Rev 2021; 13:1091-1100. [PMID: 35047091 PMCID: PMC8724488 DOI: 10.1007/s12551-021-00863-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The exposure to sun radiation is indispensable to our health; however, a long-term and high exposure could lead to cell damage, erythema, premature skin aging, and promotion of skin tumors. An underlying pathomechanism is the formation of free radicals which may induce oxidative stress at elevated concentrations. Different skin models, such as porcine-, murine-, human- ex vivo skin, reconstructed human skin (RHS) and human skin in vivo, were investigated during and after irradiation using X- and L-band EPR spectroscopy within different spectral regions (UVC to NIR). The amount of radical formation was quantified with the spin probe PCA and the radical types were measured ex vivo with the spin trap DMPO. The radiation dose influences the types of radicals formed in the skin. While reactive oxygen species (ROS) are always pronounced at low doses, there is an increase in lipid oxygen species (LOS) at high doses. Furthermore, the radical types arise independent from the irradiation wavelength, whereas the general amount of radical formation differs with the irradiation wavelength. Heat pre-stressed porcine skin already starts with higher LOS values. Thus, the radical type ratio might be an indicator of stress and the reversal of ROS/LOS constitutes the point where positive stress turns into negative stress.Compared to light skin types, darker types produce less radicals in the ultraviolet, similar amounts in the visible and higher ones in the infrared spectral region, rendering skin type-specific sun protection a necessity.
Collapse
Affiliation(s)
- M. C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - L. Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35032 Marburg, Germany
| | - S. B. Lohan
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Gale CB, Yan ZB, Fefer M, Goward GR, Brook MA. Synthesis of Siliconized Photosensitizers for Use in 1O 2-Generating Silicone Elastomers: An Electron Paramagnetic Resonance Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cody B. Gale
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Z. Blossom Yan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario L5K 1A8, Canada
| | - Gillian R. Goward
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Brainina KZ, Markina MG, Stozhko NY. Optimized Potentiometric Assay for Non-invasive Investigation of Skin Antioxidant Activity. ELECTROANAL 2018. [DOI: 10.1002/elan.201800309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Khiena Z. Brainina
- Ural State University of Economics; 8 March St., 62 Ekaterinburg 620144 Russian Federation
- Ural Federal University; Lenin Ave., 51 Ekaterinburg 620000 Russian Federation
| | - Maria G. Markina
- Ural State University of Economics; 8 March St., 62 Ekaterinburg 620144 Russian Federation
| | - Natalia Yu. Stozhko
- Ural State University of Economics; 8 March St., 62 Ekaterinburg 620144 Russian Federation
| |
Collapse
|
10
|
Walker KA, Unbehauen ML, Lohan SB, Saeidpour S, Meinke MC, Zimmer R, Haag R. Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Spin-labeling active compounds is a convenient way to prepare them for EPR spectroscopy with minimal alteration of the target molecule. In this study we present the labeling reaction of dexamethasone (Dx) with either TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or PCA (3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) with high yields. According to NMR data, both labels are attached at the primary hydroxy group of the steroid. In subsequent spin-stability measurements both compounds were applied onto HaCaT cells. When the signal of Dx-TEMPO decreased below the detection limit within 3 h, the signal of Dx-PCA remained stable for the same period of time.
Collapse
Affiliation(s)
- Karolina A. Walker
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Michael L. Unbehauen
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Silke B. Lohan
- Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology, Charité – Universitätsmedizin Berlin, Charitéplatz 1 , 10117 Berlin , Germany
| | - Siavash Saeidpour
- Department of Physics , Freie Universität Berlin, Arnimallee 14 , 14195 Berlin , Germany
| | - Martina C. Meinke
- Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology, Charité – Universitätsmedizin Berlin, Charitéplatz 1 , 10117 Berlin , Germany
| | - Reinhold Zimmer
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
11
|
Lohan SB, Vitt K, Scholz P, Keck CM, Meinke MC. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation. Chem Biol Interact 2017; 280:1-7. [PMID: 29203372 DOI: 10.1016/j.cbi.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
The skin is exposed to many stress factors which, in turn, can promote a shift of the antioxidant (AO) network towards the prooxidative side, supporting the development of various skin disorders. A balanced diet, in combination with a healthy lifestyle could reduce oxidative stress. Carotenoids are essential nonenzymatic AOs and main components of the exogenous AO system. To examine the interdependence between endogenous and exogenous AOs, secondary keratinocytes (HaCaT) were treated with various Beta (β-)-carotene concentrations with subsequent stress treatment by moderate irradiation (700-2000 nm). To facilitate the uptake of β-carotene, an innovative nanocrystal solution was used. Cell viability assay was applied to HaCaT cells to evaluate suitable concentration of β-carotene, whereby the uptake was measured by resonant Raman spectroscopy. The redox status was determined before and after supplementation with two selected β-carotene concentrations (0.02 and 0.1 μg/ml) and irradiation. Reactive oxygen species (ROS) were measured by electron paramagnetic resonance spectroscopy and the AO glutathione (GSH) by a fluorescent-based assay for evaluating the endogenous redox status. An increase of ROS and a reduction of GSH after irradiation was observed. Interestingly, the applied β-carotene, already induce oxidative stress. Nevertheless, an effective protection against irradiation could be observed for the lower dose. The high dose turned pro-oxidative.
Collapse
Affiliation(s)
- Silke B Lohan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany.
| | - Kristina Vitt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | | | | | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
12
|
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J Control Release 2016; 242:3-15. [DOI: 10.1016/j.jconrel.2016.07.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|