1
|
Vandorou M, Plakidis C, Tsompanidou IM, Adamantidi T, Panagopoulou EA, Tsoupras A. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Int J Mol Sci 2024; 25:10856. [PMID: 39409182 PMCID: PMC11476848 DOI: 10.3390/ijms251910856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Apples are consumed lavishly worldwide, while demand is increasing for the management of the huge apple-waste amounts that lead to significant disposal costs and ecological issues. Additionally, apples represent fruits with several bioactive constituents, which are key factors in a healthy, balanced diet. In the present study, an extensive review is presented regarding the bioactive compounds of an apple processing by-product, namely apple pomace, mentioning their significance as viable ingredients/substances in foods and cosmetics aiming at chronic disease prevention and health promotion. Apple pomace contains several constituents, such as polar lipids, phenolics, vitamins and dietary fibers, with potential antioxidant, anti-inflammatory, anti-thrombotic, anti-aging and skin-protecting properties, and thus, they may contribute to minimizing the risk of various health conditions. Additionally, the mechanisms of action of such functional bioactives from apple pomace exert health benefits that will be examined, while the potential synergistic effects will also be investigated. Moreover, we will present the methods and techniques needed for the utilization of apple pomace in the appropriate form, such as powder, extracts, essential oil and so on, and their several applications in the food and cosmeceutical industry sectors, which summarize that apple pomace represents an ideal alternative to synthetic bioactive compounds.
Collapse
Affiliation(s)
- Maria Vandorou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Christos Plakidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Ilektra Maria Tsompanidou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Eirini A. Panagopoulou
- Department of Dietetics and Nutrition, Harokopio University, 70, El. Venizelou Ave., 17676 Kallithea, Greece;
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| |
Collapse
|
2
|
Farooqi MA, Bae S, Kim S, Bae S, Kausar F, Farooqi HMU, Hyun CG, Kang CU. Eco-friendly synthesis of bioactive silver nanoparticles from black roasted gram (Cicer arietinum) for biomedical applications. Sci Rep 2024; 14:22922. [PMID: 39358402 PMCID: PMC11447251 DOI: 10.1038/s41598-024-72356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Green synthesis leverages biological resources such as plant extracts to produce cost-effectively and environmentally friendly NPs. In our study, silver nanoparticles (AgNPs) are biosynthesized using blank roasted grams (Cicer arietinum) as reducing agents. CA-AgNPs were characterized by a characteristic surface plasmon resonance (SPR) peak at 224 nm in the UV-Vis spectrum. FTIR analysis revealed functional groups with O-H stretching at 3410 cm-1, C-H stretching at 2922 cm-1, and C=O stretching at 1635 cm-1. XRD patterns exhibited sharp peaks at 33.2°, 38.4°, 55.7°, and 66.6°, confirming high crystallinity. Morphological analysis through FESEM indicated spherical CA-AgNPs averaging 500 nm in size, with EDS revealing Ag at 97.51% by weight. Antimicrobial assays showed zones of inhibition of 14 mm against Candida albicans, 18 mm against Escherichia coli., and 12 mm against Propionibacterium acnes. The total phenolic content of CA-AgNPs was 26.17 ± 13.54 mg GAE/g, significantly higher than the 11.85 ± 9.57 mg GAE/g in CA extract. The ABTS assay confirmed the antioxidant potential with a lower IC50 value of 1.73 ± 0.41 µg/mL, indicating enhanced radical scavenging activity. Anti-melanogenesis was validated through tyrosinase, showing inhibition rates of 97.97% at the highest concentrations. The anti-inflammatory was evaluated by western blot, which showed decreased expression of iNOS and COX-2. This study demonstrates the green synthesis of CA-AgNPs and its potential biomedical applications. The results of this study demonstrate that biosynthesized CA-AgNPs have key biological applications.
Collapse
Affiliation(s)
- Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Sungmin Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Sehui Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sungeun Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disoders, Children's Hospital of Orange County, Los Angeles, CA, USA.
| | - Chang Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea.
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
3
|
Mahdi I, Imbimbo P, Ortaakarsu AB, Adhiambo Ochieng M, Ben Bakrim W, Drissi BE, Ibrahim MA, Abdelfattah MAO, Mahmoud MF, Monti DM, Sobeh M. Chemical profiling and dermatological and anti-aging properties of Syzygium jambos L. (Alston): evidence from molecular docking, molecular dynamics, and in vitro experiments. Front Mol Biosci 2024; 10:1331059. [PMID: 38250734 PMCID: PMC10797028 DOI: 10.3389/fmolb.2023.1331059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The phytoconstituents of the aqueous extract from Syzygium jambos L. (Alston) leaves were defined using HPLC-PDA-MS/MS and the antioxidant, anti-aging, antibacterial, and anti-biofilm activities of the extract were in silico and in vitro investigated. The antioxidant activities were performed using in vitro DPPH and FRAP assays as well as H2-DCFDA assay in HaCaT cells in which oxidative stress was induced by UVA radiation. Anti-aging activity was tested in vitro, using aging-related enzymes. The antibacterial, anti-biofilm and inhibitory effects on bacterial mobilities (swarming and swimming) were assessed against Pseudomonas aeruginosa. Results showed that S. jambos aqueous extract contained 28 phytochemicals belonging to different metabolite classes, mainly phenolic acids, gallic acid derivatives, flavonoids, and ellagitannins. Mineral content analysis showed that S. jambos leaves contained moderate amounts of nitrogen, potassium, manganese, magnesium, and zinc, relatively low amounts of phosphorus and copper, and high concentration of calcium and iron. The extract displayed strong antioxidant activities in vitro and inhibited UVA-induced oxidative stress in HaCaT cells. Docking the major compounds identified in the extract into the four main protein targets involved in skin aging revealed an appreciable inhibitory potential of these compounds against tyrosinase, elastase, hyaluronidase, and collagenase enzymes. Moreover, molecular dynamic simulations were adopted to confirm the binding affinity of some selected compounds towards the target enzymes. The extract exhibited pronounced in vitro anti-aging effects, compared to kojic acid and quercetin (the reference compounds). It also inhibited the growth of P. aeruginosa, counteracted its ability to form biofilm, and impeded its swarming and swimming mobilities. Altogether, these findings strongly propose S. jambos leaves as a promising source of bioactive metabolites for the development of natural cosmeceutical and dermatological agents.
Collapse
Affiliation(s)
- Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Napoli, Italy
| | | | - Melvin Adhiambo Ochieng
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Badr Eddine Drissi
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | | | | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Napoli, Italy
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
4
|
Kim T, Hyun CG. Imperatorin Positively Regulates Melanogenesis through Signaling Pathways Involving PKA/CREB, ERK, AKT, and GSK3β/β-Catenin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196512. [PMID: 36235048 PMCID: PMC9571183 DOI: 10.3390/molecules27196512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
The present study investigated the melanogenic effects of imperatorin and isoimperatorin and the underlying mechanisms of imperatorin using a mouse melanoma B16F10 model. Interestingly, treatment with 25 μM of either imperatorin or isoimperatorin, despite their structural differences, did not produce differences in melanin content and intracellular tyrosinase activity. Imperatorin also activated the expression of melanogenic enzymes, such as tyrosinase (TYR) and tyrosinase-related proteins TYRP-1 and TYRP-2. Mechanistically, imperatorin increases melanin synthesis through the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA)/cAMP-responsive element-binding protein (CREB)-dependent upregulation of microphthalmia-associated transcription factor (MITF), which is a key transcription factor in melanogenesis. Furthermore, imperatorin exerted melanogenic effects by downregulating extracellular signal-regulated kinase (ERK) and upregulating phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthesis kinase-3β (GSK-3β). Moreover, imperatorin increased the content of β-catenin in the cell cytoplasm and nucleus by reducing the content of phosphorylated β-catenin (p-β-catenin). Finally, we tested the potential of imperatorin in topical application through primary human skin irritation tests. These tests were performed on the normal skin (upper back) of 31 volunteers to determine whether 25 or 50 µM of imperatorin had irritation or sensitization potential. During these tests, imperatorin did not induce any adverse reactions. Taken together, these findings suggest that the regulation of melanogenesis by imperatorin can be mediated by signaling pathways involving PKA/CREB, ERK, AKT, and GSK3β/β-catenin and that imperatorin could prevent the pathogenesis of pigmentation diseases when used as a topical agent.
Collapse
|
5
|
Hartati R, Widodo Y, Tarigan C, Fidrianny I. Green Honey Deli Water Apple (Syzygium aqueum (Burm. f.) Alston “Madu Deli Hijau”): Evaluation of Antioxidant Activities and Phytochemical Content. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND OF THE STUDY: Antioxidants are able to fight against free radicals which then prevent degenerative diseases. Antioxidants can be found in many plants such as water apples.
AIM OF THE STUDY: This research is aimed to determine the antioxidant activity of green honey deli water apple (Syzygium aqueum) leaves, branches, fruits extracts through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Cupric Reducing Antioxidant Capacity (CUPRAC) methods, total phenolic content (TPC), total flavonoid content (TFC), correlation of TPC and TFC on antioxidant activity, correlation between DPPH and CUPRAC methods, and content of flavonoid compounds found in ethanol fruit extract of green honey deli water apple.
METHODOLOGY: Antioxidant activities were examined by determining ascorbic acid equivalent (AAE) through DPPH and CUPRAC methods. TPC and TFC were determined using UV-vis spectrophotometry. Correlation of TPC and TFC on antioxidant activity and correlation between DPPH and CUPRAC results were analyzed by Pearson’s method. Contents of flavonoid compounds were determined using HPLC.
RESULTS: Antioxidant activities of green honey deli water apple leaves, branches, and fruits extracts according to DPPH and CUPRAC methods were 3.97–354.96 mg AAE/g; 10.46–222.51 mg AAE/g respectively. Ethanol leaves extract had the highest TPC (68.14 ± 1.69 g GAE/100 g) and ethyl acetate leaves extract showed the highest TFC (18.65 ± g QE/100 g). TPC and TFC were found to correlate with the antioxidant activities. DPPH and CUPRAC results also correlated significantly positive.
CONCLUSION: Phenolic and flavonoid compounds had great contribution on antioxidant activities by DPPH and CUPRAC. The two methods exposed linear results. Ethanol fruits extract of green honey deli water apple contained quercetin (0.16%) and kaempferol (0.39%).
Collapse
|
6
|
Lee Y, Hyun CG. Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. Int J Mol Sci 2022; 23:5813. [PMID: 35628627 PMCID: PMC9146895 DOI: 10.3390/ijms23105813] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/22/2022] Open
Abstract
Using repositioning to find new indications for existing functional substances has become a global target of research. The objective of this study is to investigate the anti-inflammatory potential of psoralen derivatives (5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, and 8-methoxypsoralen) in macrophages cells. The results indicated that most psoralen derivatives exhibited significantly inhibited prostaglandin E2 (PGE2) production, particularly for 8-hydroxypsoralen (xanthotoxol) in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. In addition, xanthotoxol treatment decreased the PGE2, IL-6, and IL-1β production caused by LPS stimulation in a concentration-dependent manner. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which activated with LPS treatment, were decreased by xanthotoxol treatment. Mechanistic studies revealed that xanthotoxol also suppressed LPS-stimulated phosphorylation of the inhibitor of κBα (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells. The Western blot assay results show that xanthotoxol suppresses LPS-induced p65 translocation from cytosol to the nucleus in RAW 264.7 cells. Moreover, we tested the potential application of xanthotoxol as a cosmetic material by performing human skin patch tests. In these tests, xanthotoxol did not induce any adverse reactions at a 100 μΜ concentration. These results demonstrate that xanthotoxol is a potential therapeutic agent for topical application that inhibits inflammation via the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|