1
|
Liu X, Hage T, Chen L, Wang EHC, Liao I, Goldberg J, Gosto S, Cziryak P, Senna M, Chen Y, Zheng Q. Revealing the Therapeutic Potential: Investigating the Impact of a Novel Witch Hazel Formula on Anti-Inflammation and Antioxidation. J Cosmet Dermatol 2025; 24:e16662. [PMID: 39575475 PMCID: PMC11845955 DOI: 10.1111/jocd.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/23/2025]
Abstract
BACKGROUND Skin barrier health is crucial for preventive and corrective skincare across all skin types. Witch hazel (Hamamelis virginiana) extracts show potential in addressing skin issues, but their efficacy in treating chronic inflammation, improving skin barrier function, and combating UV-induced oxidation requires further investigation. AIMS To evaluate the efficacy of a novel formula containing witch hazel extracts in treating chronic inflammation, improving skin barrier function, and combating UV-induced oxidation. METHODS We employed a novel ex vivo chronic inflammation model to assess anti-inflammatory effects, measuring key pro-inflammatory cytokines. Barrier function markers, such as loricrin and transglutaminase-1, were analyzed. An ex vivo model with UV-induced Reactive Oxygen Species (ROS) elevation was used to evaluate antioxidant properties, measuring specific ROS markers like 4-Hydroxynonenal and carbonylated protein. RESULTS The novel witch hazel formula significantly reduced pro-inflammatory cytokines in both 2D and ex vivo models, including IL-6 and IL-8, demonstrating potent anti-inflammatory effects. Barrier function markers showed notable improvements compared to the inflamed condition. In the UV-induced ROS model, the formula remarkably decreased ROS levels, specifically 4-Hydroxynonenal and carbonylated protein, indicating strong antioxidant properties. CONCLUSIONS Our findings demonstrate that the novel witch hazel formula exhibits potent anti-inflammatory and antioxidant properties while enhancing skin barrier function. This natural, well-tolerated ingredient offers a promising treatment option for improving overall skin health, presenting new opportunities in skincare formulation and treatment strategies.
Collapse
Affiliation(s)
- Xue Liu
- L'Oreal Research and InnovationClarkNew JerseyUSA
| | | | - Li‐Chi Chen
- Harvard Medical School, Boston & Beth Israel Lahey HealthBurlingtonMassachusettsUSA
| | | | - I‐Chien Liao
- L'Oreal Research and InnovationClarkNew JerseyUSA
| | | | - Sabina Gosto
- L'Oreal Research and InnovationClarkNew JerseyUSA
| | | | - Maryanne Senna
- Harvard Medical School, Boston & Beth Israel Lahey HealthBurlingtonMassachusettsUSA
| | - Ying Chen
- L'Oreal Research and InnovationClarkNew JerseyUSA
| | - Qian Zheng
- L'Oreal Research and InnovationClarkNew JerseyUSA
| |
Collapse
|
2
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
4
|
Melnyk N, Vlasova I, Skowrońska W, Bazylko A, Piwowarski JP, Granica S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int J Mol Sci 2022; 23:ijms23179644. [PMID: 36077043 PMCID: PMC9455764 DOI: 10.3390/ijms23179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin disorders of different etiology, such as dermatitis, atopic dermatitis, eczema, psoriasis, wounds, burns, and others, are widely spread in the population. In severe cases, they require the topical application of drugs, such as antibiotics, steroids, and calcineurin inhibitors. With milder symptoms, which do not require acute pharmacological interventions, medications, dietary supplements, and cosmetic products of plant material origin are gaining greater popularity among professionals and patients. They are applied in various pharmaceutical forms, such as raw infusions, tinctures, creams, and ointments. Although plant-based formulations have been used by humankind since ancient times, it is often unclear what the mechanisms of the observed beneficial effects are. Recent advances in the contribution of the skin microbiota in maintaining skin homeostasis can shed new light on understanding the activity of topically applied plant-based products. Although the influence of various plants on skin-related ailments are well documented in vivo and in vitro, little is known about the interaction with the network of the skin microbial ecosystem. The review aims to summarize the hitherto scientific data on plant-based topical preparations used in Poland and Ukraine and indicate future directions of the studies respecting recent developments in understanding the etiology of skin diseases. The current knowledge on investigations of interactions of plant materials/extracts with skin microbiome was reviewed for the first time.
Collapse
Affiliation(s)
- Natalia Melnyk
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Inna Vlasova
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-720-9053
| |
Collapse
|
5
|
Unveiling the Ability of Witch Hazel ( Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int J Mol Sci 2022; 23:ijms23169279. [PMID: 36012541 PMCID: PMC9408886 DOI: 10.3390/ijms23169279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023] Open
Abstract
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 μg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 μg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 μg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.
Collapse
|
6
|
Masota NE, Ohlsen K, Schollmayer C, Meinel L, Holzgrabe U. Isolation and Characterization of Galloylglucoses Effective against Multidrug-Resistant Strains of Escherichia coli and Klebsiella pneumoniae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155045. [PMID: 35956993 PMCID: PMC9370434 DOI: 10.3390/molecules27155045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Nelson E. Masota
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Upanga West, Dar es Salaam P.O. Box 65013, Tanzania
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany
| | - Curd Schollmayer
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-931-3185461
| |
Collapse
|