1
|
Baldisserotto C, Gessi S, Ferraretto E, Merighi S, Ardondi L, Giacò P, Ferroni L, Nigro M, Travagli A, Pancaldi S. Cultivation modes affect the morphology, biochemical composition, and antioxidant and anti-inflammatory properties of the green microalga Neochloris oleoabundans. PROTOPLASMA 2024; 261:1185-1206. [PMID: 38864933 PMCID: PMC11511745 DOI: 10.1007/s00709-024-01958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Microalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions. In addition, specific studies on the antioxidant and anti-inflammatory properties of microalgae mainly concern Chlorella or Spirulina. The present work was focused on the characterization of the Chlorophyta Neochloris oleoabundans under two combinations of cultivation modes: autotrophy and glucose-induced mixotrophy, each followed by starvation. Biomass for morphological and biochemical characterization, as well as for extract preparation, was harvested at the end of each cultivation phase. Analyses indicated a different content of the most important classes of bioactive compounds with antioxidant/anti-inflammatory properties (lipids, exo-polysaccharides, pigments, total phenolics, and proteins). In particular, the most promising condition able to prompt the production of antioxidant algal biomass with anti-inflammatory properties was the mixotrophic one. Under mixotrophy, beside an elevated algal biomass production, a strong photosynthetic metabolism with high appression of thylakoid membranes and characteristics of high photo-protection from oxidative damage was observed and linked to the overproduction of exo-polysaccharides and lipids rather than pigments. Overall, mixotrophy appears a good choice to produce natural bioactive extracts, potentially well tolerated by human metabolism and environmentally sustainable.
Collapse
Affiliation(s)
- C Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - S Gessi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - E Ferraretto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Merighi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - L Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - P Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - L Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - M Nigro
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - A Travagli
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
2
|
Marques GDA, Hiraishi CF, Macedo PIDS, Pinto CASDO, Gregório J, Rosado C, Velasco MVR, Baby AR. HPLC-TBARS-EVSC (high-performance liquid chromatography-thiobarbituric acid reactive substances-ex vivo stratum corneum) protocol: Selection of the subjects and approach to present the results. Int J Cosmet Sci 2023; 45:647-654. [PMID: 37265451 DOI: 10.1111/ics.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Nowadays, it is recognized the need for improved safety and efficacy protocols to evaluate the human stratum corneum (SC) and its interaction with topical and cosmetic formulations by minimally or non-invasive methodologies. The aim of our research work was to streamline the HPLC-TBARS-EVSC (high-performance liquid chromatography-thiobarbituric acid reactive substances-ex vivo stratum corneum) methodology, by exploring the results of a group of 18 subjects. METHODS The study included nine women and nine men aged between 19 and 57 years old with phototypes from II to V. Sites in the forearm of each volunteer were randomly delimited, and the SC was collected by tape stripping. HPLC was used to quantify the MDA-TBA2 (malondialdehyde-thiobarbituric acid) adduct from the tape-stripped SC, irradiated and not by an ultraviolet (UV) simulator chamber. RESULTS Observing the findings of our present investigation, and the statistical approach applied, the use of the ratio between the treatment site and control would be an adequate strategy to better discriminate and evaluate the results. Additionally, an optimal selection of the volunteers to respond specifically to the purpose of the ex vivo assay also can be considered advantageous. CONCLUSIONS It seemed that in future studies focusing on the impact of SC UV-induced lipid peroxidation, determined by the HPLC-TBARS-EVSC, the most suitable subjects are females aged less than 35 years old, with phototype II.
Collapse
Affiliation(s)
| | - Camila Faustino Hiraishi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Ivo de Souza Macedo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - João Gregório
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | | | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Baldisserotto C, Gentili V, Rizzo R, Di Donna C, Ardondi L, Maietti A, Pancaldi S. Characterization of Neochloris oleoabundans under Different Cultivation Modes and First Results on Bioactivity of Its Extracts against HCoV-229E Virus. PLANTS (BASEL, SWITZERLAND) 2022; 12:26. [PMID: 36616154 PMCID: PMC9823352 DOI: 10.3390/plants12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga Neochloris oleoabundans cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E (Coronaviridae family). Glucose was employed for mixotrophic cultures. Growth and maximum quantum yield of photosystem II were monitored for both cultivations. Algae extracts for antiviral tests were prepared using cultures harvested at the early stationary phase of growth. Biochemical and morphological analyses of algae indicated a different content of the most important classes of bioactive compounds with antiviral properties (lipids, exo-polysaccharides, and total phenolics, proteins and pigments). To clarify which phase of HCoV-229E infection on MRC-5 fibroblast cells was affected by N. oleoabundans extracts, four conditions were tested. Extracts gave excellent results, mainly against the first steps of virus infection. Notwithstanding the biochemical profile of algae/extracts deserves further investigation, the antiviral effect may have been mainly promoted by the combination of proteins/pigments/phenolics for the extract derived from autotrophic cultures and of proteins/acidic exo-polysaccharides/lipids in the case of mixotrophic ones.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Chiara Di Donna
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Luna Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Xylityl Sesquicaprylate Efficacy as an Antiseptic Ingredient for Oral Care Products (Mouthwash): An In Vitro Screening Investigation against Eight Microorganisms. Molecules 2022; 28:molecules28010028. [PMID: 36615226 PMCID: PMC9822345 DOI: 10.3390/molecules28010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
For dental caries and periodontal diseases initiated by dental plaque (as bacterial communities) and to inhibit the growth of oral pathogenic bacteria, oral care products containing antiseptic active ingredients are highly recommended, nonetheless, side effects of such actives are a concern (teeth discoloration/staining and taste perception, for example). In this context, we challenged xylityl sesquicaprylate, an antiseptic compound from natural resources, as an active ingredient to be used in an alcohol-free mouthwash formulation. The xylityl sesquicaprylate sample was compared to a respective blank mouthwash formulation and one containing triclosan. The in vitro efficacy was screened by the time-kill assay against eight microorganisms. The xylityl sesquicaprylate-containing mouthwash (0.45% w/w) presented a particularly interesting profile of efficacy against Actinomyces viscosus, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, with results of greater magnitude to reduce the log10 of those microorganisms in comparison with the triclosan sample.
Collapse
|
5
|
Dammak M, Ben Hlima H, Smaoui S, Fendri I, Michaud P, Ayadi MA, Abdelkafi S. Conception of an environmental friendly O/W cosmetic emulsion from microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73896-73909. [PMID: 35622292 DOI: 10.1007/s11356-022-20824-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of eco-friendly cosmetic such as those from microalgae for skin regeneration and collagen synthesis has gained a great interest worldwide. Accordingly, the potential of microalgae biomass as source of anti-aging cosmetic cream with high antioxidant activity has been investigated. Stabilities and sensory characteristics of cosmetic creams supplemented with Spirulina, Tetraselmis sp. and Dunaliella sp. at 0.5, 1.5 and 2.5%, respectively, revealed a conservation of physico-chemical and preliminary stability properties of formulations. To analyze physico-chemical and textural parameters, accelerated stability study was evaluated under two thermal conditions (25 and 40 °C) during 90 days. Results showed that pH values of all formulations were within the limits of normal skin pH range under storage time at 25 and 40 °C. During this period, the colored creams showed a significant changes of a* and b* indices, reflecting the instability of microalgae colors. Microalgae modified the textural characteristics of emulsions. The Tetraselmis sp. containing-cream had the lowest (P < 0.05) values of hardness, springiness, and cohesiveness. The 0.5% Spirulina containing-cream had the best stable consistency and adhesiveness under time and temperature variations. It exhibited the best properties to be used for skin care products. Thanks to their high content in bioactive macromolecules, microalgae considerably improved the antioxidant activity of the new formulated skin creams.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Mohamed Ali Ayadi
- Laboratory of Analysis Valorization and Food Safety, National Engineering School of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
6
|
Prospecting In Vitro Antioxidant and Photoprotective Properties of Rosmarinic Acid in a Sunscreen System Developed by QbD Containing Octyl p-Methoxycinnamate and Bemotrizinol. COSMETICS 2022. [DOI: 10.3390/cosmetics9020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Progressively growing diagnoses of skin cancer trigger public health concerns about excessive sun exposure, awareness of the deleterious effects of ultraviolet (UV) radiation on the skin, and the proper use of sunscreens. Studies show that bioactive molecules, such as rosmarinic acid (RA), may potentiate the photoprotective and antioxidant activity of topical formulations. This research presents the application of the concepts of quality by design (QbD) to evaluate the critical parameters of quality and the development of an optimized cosmetic formulation with RA by means of an understanding of product design space. Samples were developed using design of experiments (DoE) and they were evaluated for in vitro antioxidant activity and photoprotective efficacy, as well as for photostability through artificial irradiation. We were able to achieve the RA performance regarding antioxidant and SPF properties through in vitro experiments. We obtained the equations for predicting the in vitro antioxidant activity and SPF. Considering our sunscreen system, developed with octyl p-methoxycinnamate and bemotrizinol, the presence of RA increased its antioxidant capacity; however, the in vitro SPF was reduced when both UV filters were used. The development of multifunctional sunscreens is of utmost importance; moreover, there is a need for the rational development of formulations that ensure representative statistical tests of the effects and interactions among the components of a formulation on the desired critical quality attributes, including efficacy.
Collapse
|