1
|
Rezghi Rami M, Meskini M, Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: synthesis and mechanism of action. J Infect Public Health 2024; 17:102536. [PMID: 39276432 DOI: 10.1016/j.jiph.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
The advancement of safe, eco-friendly, and cost-efficient techniques for nanoparticle production is a crucial objective in nanotechnology. Among the various sustainable methods, the biological synthesis of nanoparticles utilizing fungi, bacteria, yeasts, and plants stands out. Fungi, in particular, are well suited for this task because of their capacity to secrete numerous enzymes and streamline subsequent processes. Using fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. The utilization of fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. Fungi have long been acknowledged as adept natural engineers capable of creating a wide array of nanoparticles with distinct properties and applications. This article provides an overview of fungus-mediated nanoparticle development, shedding light on the underlying mechanisms of their synthesis and the factors influencing their characteristics. Furthermore, the potential of fungus-mediated nanoparticles in the industrial domain has been explored. These findings emphasize the importance of different fungal species in nanoparticle synthesis, as well as the biocompatibility and environmental friendliness of fungus-mediated nanoparticles. By underscoring the essential role of fungi in connecting natural knowledge with innovative industrial applications, recent progress in enhancing nanoparticle production and optimizing synthesis conditions through fungi has been examined to underscore the feasibility of extensive industrial nanoparticle utilization via fungi.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.
| | - Maryam Meskini
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Futagawa K, Tang D, Kato Y, Nagata K, Suzuki M. Structural Analyses of DP-1, a Protein with the Ability To Bind Gold Nanoparticles, by Using Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202300554. [PMID: 37792876 DOI: 10.1002/cbic.202300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Gold nanoparticles (AuNPs), consisting of metallic gold, are applied in various fields owing to their characteristic physical properties. Collimonas sp. D-25 (D-25) is a Gram-negative bacterium obtained from soil, compost, and other environmental materials in the Akita Prefecture. DP-1 is a water-soluble protein found in D-25 that binds specifically to AuNPs and retains them with high stability. This study aimed to identify the part of DP-1 that interacts with AuNPs and determine its 3D structure in solution using nuclear magnetic resonance spectroscopy. Peptide fragments obtained by trypsin digestion were examined for their AuNP-binding capacity to determine the key Au-binding domain of DP-1. A fragment consisting of 16 amino acid residues (GHAATPEQYGVVTANK) was identified as the peptide with the highest binding activity. Structural analyses of this peptide indicated that the main chain was elongated, and negatively charged residues in the side chain were exposed on the surface by incorporating AuNPs. These results suggest that DP-1 interacts with AuNPs through negatively charged residues and extended hydrophobic residues for protein-protein interactions. The structural data also provide new insights into biomimetic technologies.
Collapse
Affiliation(s)
- Kei Futagawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Donglin Tang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Muchio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Bairwa P, Kumar N, Devra V, Abd-Elsalam KA. Nano-Biofertilizers Synthesis and Applications in Agroecosystems. AGROCHEMICALS 2023; 2:118-134. [DOI: 10.3390/agrochemicals2010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Green chemistry and nanobiotechnology have great potential for generating new and significant products that are favorable to the environment, industry, and consumers. The nanoforms of metals and nanocomposites are more effective and efficient agents than their bulkier counterparts because of their distinctive physical, chemical, and optical properties. Green technology is a rapidly growing scientific field that has recently received attention due to its many applications. Different nanoparticle dimensions, sizes, and bioactivities will develop as a consequence of changes in the biomaterials employed for synthesis. The existing understanding of several green synthesis methods, that depend on different plant components and microorganisms for the production of nanoparticles, is summarized in the current review. Employing these materials minimizes synthesis costs while minimizing the use of hazardous chemicals and promoting “biosynthesis.” To produce metal nanoparticles efficiently, bio-reduction is influenced by the abundance of essential enzymes, proteins, and biomolecules. Rapid biosynthetic regeneration makes this characteristic sufficient for their employment in a range of situations. In this review, we explore the biosynthesis of nanomaterials and their potential in sustainable agriculture. Biosynthesized nanofertilizers, or bionanofertilizers, are a revolutionary new class of fertilizer that has been developed with the help of nanotechnology. These fertilizers offer many advantages over traditional fertilization methods and can be used to increase crop yields while reducing the environmental impact of fertilizers. Bionanofertilizer are an inexpensive way to increase plant growth and production, and to improve the use of nutrients by plants and the health of the soil. According to our survey, nanotechnology presents a wide range of prospects by offering a cutting-edge and environmentally friendly alternative in the agricultural sector.
Collapse
Affiliation(s)
- Preeti Bairwa
- Janki Devi Bajaj Government Girls College, Kota 324001, Rajasthan, India
| | - Nimish Kumar
- Janki Devi Bajaj Government Girls College, Kota 324001, Rajasthan, India
| | - Vijay Devra
- Janki Devi Bajaj Government Girls College, Kota 324001, Rajasthan, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
4
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Sahoo A, Satapathy KB, Sahoo SK, Panigrahi GK. Microbased biorefinery for gold nanoparticle production: recent advancements, applications and future aspects. Prep Biochem Biotechnol 2022:1-12. [PMID: 36137172 DOI: 10.1080/10826068.2022.2122065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Multifaceted utility of nanomaterials is indispensable to meet the environmental challenges across the globe. Nanomaterials substantially contribute in delineating the rapidly advancing field of nanotechnology. Recently, primary emphasis has been laid down on augmenting the biological methodologies for the synthesis of nanomaterials. In this aspect, green nanotechnology has revolutionized the entire process of nanosynthesis. Essentially biofabrication of nanoparticles have long-range applications, primarily in the field of medical applications such as drug delivery, cancer diagnostics and genetic engineering processes. Biocompatible and stable nanoparticles synthesized from biological source can be an effective approach against the chemically synthesized owing to their non-expensive and eco-friendly attributes. Biological systems including bacteria, yeasts, fungi and plants have already been exploited in the field of nanotechnology. Use of fungi seems to be a very effective and economical approach for the synthesis of gold nanoparticles. Gold nanoparticles possess anti-oxidation activity, are highly stable and biocompatible in nature. Fungi-mediated nanoparticle biosynthesis is more advantageous as compared to bacterial synthesis. Fungi secrete large amounts of enzymes, whereas the enzyme secretion of yeasts is weak. Here, we have reported the recent advancements and future implications in the field of gold nanoparticle production and applications.
Collapse
Affiliation(s)
- Annapurna Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Kunja Bihari Satapathy
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Shraban Kumar Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Gagan Kumar Panigrahi
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| |
Collapse
|
6
|
Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy metal removal using genetically engineered organisms (GEOs) offer more cost and energy-efficient, safer, greener, and environmentally-friendly opportunities as opposed to conventional strategies requiring hazardous or toxic chemicals, complex processes, and high pressure/temperature. Additionally, GEOs exhibited superior potentials for biosynthesis of nanoparticles with significant capabilities in bioreduction of heavy metal ions that get accumulated as nanocrystals of various shapes/dimensions. In this context, GEO-aided nanoparticle assembly and the related reaction conditions should be optimized. Such strategies encompassing biosynthesized nanoparticle conforming to the green chemistry precepts help minimize the deployment of toxic precursors and capitalize on the safety and sustainability of the ensuing nanoparticle. Different GEOs with improved uptake and appropriation of heavy metal ions potentials have been examined for bioreduction and biorecovery appliances, but effective implementation to industrial-scale practices is nearly absent. In this perspective, the recent developments in heavy metal removal and nanoparticle biosynthesis using GEOs are deliberated, focusing on important challenges and future directions.
Collapse
|
7
|
Kato Y, Kimura S, Kogure T, Suzuki M. Deposition of Lead Phosphate by Lead-Tolerant Bacteria Isolated from Fresh Water near an Abandoned Mine. Int J Mol Sci 2022; 23:ijms23052483. [PMID: 35269625 PMCID: PMC8910126 DOI: 10.3390/ijms23052483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Specialist bacteria can synthesize nanoparticles from various metal ions in solution. Metal recovery with high efficiency can be achieved by metal-tolerant microorganisms that proliferate in a concentrated metal solution. In this study, we isolated bacteria (Pseudomonas sp. strain KKY-29) from a bacterial library collected from water near an abandoned mine in Komatsu City, Ishikawa Prefecture, Japan. KKY-29 was maintained in nutrient medium with lead acetate and synthesized hydrocerussite and pyromorphite nanoparticles inside the cell; KKY-29 also survived nanoparticle synthesis. Quantitative PCR analysis of genes related to phosphate metabolism showed that KKY-29 decomposed organic phosphorus to synthesize lead phosphate. KKY-29 also deposited various metal ions and synthesized metal nanoparticles when incubated in various metal salt solutions other than lead. The present study considers the development of biotechnology to recover lead as an economically valuable material.
Collapse
Affiliation(s)
- Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (Y.K.); (S.K.)
| | - Satoshi Kimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (Y.K.); (S.K.)
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (Y.K.); (S.K.)
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
8
|
Abd-Elsalam KA. Nanosynthetic and ecofriendly approaches to produce green silver nanoparticles. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:3-19. [DOI: 10.1016/b978-0-12-824508-8.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
10
|
Green synthesis of nanoparticles by probiotics and their application. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:83-128. [DOI: 10.1016/bs.aambs.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Vasil'kov AY, Abd-Elsalam KA, Olenin AY. Biogenic silver nanoparticles: New trends and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:241-281. [DOI: 10.1016/b978-0-12-824508-8.00028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Es-haghi A, Taghavizadeh Yazdi ME, Sharifalhoseini M, Baghani M, Yousefi E, Rahdar A, Baino F. Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics (Basel) 2021; 6:biomimetics6020034. [PMID: 34072135 PMCID: PMC8167739 DOI: 10.3390/biomimetics6020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the biosynthesis of zinc oxide nanoparticles using Aspergillus niger (A/ZnO-NPs) is described. These particles have been characterized by UV-Vis spectrum analysis, X-ray powder diffraction, field emission scanning electron microscopy, and transmission electron microscopy. To use this biosynthesized nanoparticle as an antiproliferative and antimicrobial agent, the IC50 value against the breast cancer cell line and inhibition zone against Escherichia coli were used to optimize the effect of two processing factors including dose of filtrate fungi cell and temperature. The biosynthesized A/ZnO-NPs had an absorbance band at 320 nm and spherical shapes. The mean particles size was 35 nm. RSM (response surface methodology) was utilized to investigate the outcome responses. The Model F-value of 12.21 and 7.29 implies that the model was significant for both responses. The contour plot against inhibition zone for temperature and dose showed that if the dose increases from 3.8 to 17.2 µg/mL, the inhibition zone increases up to 35 mm. As an alternative to chemical and/or physical methods, biosynthesizing zinc oxide NPs through fungi extracts can serve as a more facile and eco-friendly strategy. Additionally, for optimization of the processes, the outcome responses in the biomedical available test can be used in the synthesis of ZnO-NPs that are utilized for large-scale production in various medical applications.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| | | | | | - Mohsen Baghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
| | - Ehsan Yousefi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
| | - Abbas Rahdar
- Department of Physics, School of Basic Sciences, University of Zabol, Zabol 9861335856, Iran
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| |
Collapse
|
13
|
Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology 2021; 19:86. [PMID: 33771172 PMCID: PMC7995756 DOI: 10.1186/s12951-021-00834-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/14/2021] [Indexed: 01/11/2023] Open
Abstract
The agricultural sector is currently facing many global challenges, such as climate change, and environmental problems such as the release of pesticides and fertilizers, which will be exacerbated in the face of population growth and food shortages. Therefore, the need to change traditional farming methods and replace them with new technologies is essential, and the application of nanotechnology, especially green technology offers considerable promise in alleviating these problems. Nanotechnology has led to changes and advances in many technologies and has the potential to transform various fields of the agricultural sector, including biosensors, pesticides, fertilizers, food packaging and other areas of the agricultural industry. Due to their unique properties, nanomaterials are considered as suitable carriers for stabilizing fertilizers and pesticides, as well as facilitating controlled nutrient transfer and increasing crop protection. The production of nanoparticles by physical and chemical methods requires the use of hazardous materials, advanced equipment, and has a negative impact on the environment. Thus, over the last decade, research activities in the context of nanotechnology have shifted towards environmentally friendly and economically viable 'green' synthesis to support the increasing use of nanoparticles in various industries. Green synthesis, as part of bio-inspired protocols, provides reliable and sustainable methods for the biosynthesis of nanoparticles by a wide range of microorganisms rather than current synthetic processes. Therefore, this field is developing rapidly and new methods in this field are constantly being invented to improve the properties of nanoparticles. In this review, we consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides. In addition, the mechanism of synthesis of metal nanoparticles by different microorganisms and their advantages and disadvantages compared to other common methods are presented.
Collapse
Affiliation(s)
- Howra Bahrulolum
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Nahid Javanshir
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Vasighe Sadat Mirbagheri
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Gholamreza Ahmadian
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran.
| |
Collapse
|
14
|
Fahmy SA, Preis E, Bakowsky U, Azzazy HMES. Platinum Nanoparticles: Green Synthesis and Biomedical Applications. Molecules 2020; 25:E4981. [PMID: 33126464 PMCID: PMC7662215 DOI: 10.3390/molecules25214981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Platinum nanoparticles (PtNPs) have superior physicochemical properties and great potential in biomedical applications. Eco-friendly and economic approaches for the synthesis of PtNPs have been developed to overcome the shortcomings of the traditional physical and chemical methods. Various biogenic entities have been utilized in the green synthesis of PtNPs, including mainly plant extracts, algae, fungi bacteria, and their biomedical effects were assessed. Other biological derivatives have been used in the synthesis of PtNPs such as egg yolk, sheep milk, honey, and bovine serum albumin protein. The green approaches for the synthesis of PtNPs have reduced the reaction time, the energy required, and offered ambient conditions of fabrication. This review highlights the state-of-the-art methods used for green synthesis of PtNPs, synthesis parameters, and their reported biomedical applications.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
- School of Pharmacy, University of Hertfordshire-Egypt hosted by GAF, R5 New Garden City, New Administrative Capital AL109AB, Cairo 11835, Egypt
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| |
Collapse
|