1
|
Jadhav PR, Kolhe PT, Ghemud VS, Shelke PN, Patole SP, Dhole SD, Dahiwale SS. Modification of WS 2thin film properties using high dose gamma irradiation. NANOTECHNOLOGY 2024; 35:335701. [PMID: 38722286 DOI: 10.1088/1361-6528/ad4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
The tunability of the transition metal dichalcogenide properties has gained attention from numerous researchers due to their wide application in various fields including quantum technology. In the present work, WS2has been deposited on fluorine doped tin oxide substrate and its properties have been studied systematically. These samples were irradiated using gamma radiation for various doses, and the effect on structural, morphological, optical and electrical properties has been reported. The crystallinity of the material is observed to be decreased, and the results are well supported by x-ray diffraction, Raman spectroscopy techniques. The increase in grain boundaries has been supported by the agglomeration observed in the scanning electron microscopy micrographs. The XPS results of WS2after gamma irradiation show evolution of oxygen, carbon, C=O, W-O and SO4-2peaks, confirming the addition of impurities and formation of point defect. The gamma irradiation creates point defects, and their density increases considerably with increasing gamma dosage. These defects crucially altered the structural, optical and electrical properties of the material. The reduction in the optical band gap with increased gamma irradiation is evident from the absorption spectra and respective Tauc plots. TheI-Vgraphs show a 1000-fold increase in the saturation current after 100 kGy gamma irradiation dose. This work has explored the gamma irradiation effect on the WS2and suggests substantial modification in the material and enhancement in electrical properties.
Collapse
Affiliation(s)
- P R Jadhav
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, PDEA's Baburaoji Gholap College, Pune 411027, India
| | - P T Kolhe
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, Sangamner Nagarpalika Arts, DJM Commerce and BNS Science College, Sangamner 422605, India
| | - V S Ghemud
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, BJS's Arts, Science & Commerce College, Pune 412207, India
| | - P N Shelke
- Department of Physics, PDEA's Baburaoji Gholap College, Pune 411027, India
- Department of Physics, Waghire College, Saswad, 412301, India
| | - S P Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - S D Dhole
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - S S Dahiwale
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
2
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
3
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
4
|
Panasci SE, Deretzis I, Schilirò E, La Magna A, Roccaforte F, Koos A, Nemeth M, Pécz B, Cannas M, Agnello S, Giannazzo F. Interface Properties of MoS 2 van der Waals Heterojunctions with GaN. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:133. [PMID: 38251098 PMCID: PMC10818867 DOI: 10.3390/nano14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The combination of the unique physical properties of molybdenum disulfide (MoS2) with those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted increasing scientific interest for the realization of innovative electronic and optoelectronic devices. A deep understanding of MoS2/GaN interface properties represents the key to properly tailor the electronic and optical behavior of devices based on this heterostructure. In this study, monolayer (1L) MoS2 was grown on GaN-on-sapphire substrates by chemical vapor deposition (CVD) at 700 °C. The structural, chemical, vibrational, and light emission properties of the MoS2/GaN heterostructure were investigated in detail by the combination of microscopic/spectroscopic techniques and ab initio calculations. XPS analyses on as-grown samples showed the formation of stoichiometric MoS2. According to micro-Raman spectroscopy, monolayer MoS2 domains on GaN exhibit an average n-type doping of (0.11 ± 0.12) × 1013 cm-2 and a small tensile strain (ε ≈ 0.25%), whereas an intense light emission at 1.87 eV was revealed by PL analyses. Furthermore, a gap at the interface was shown by cross-sectional TEM analysis, confirming the van der Waals (vdW) bond between MoS2 and GaN. Finally, density functional theory (DFT) calculations of the heterostructure were carried out, considering three different configurations of the interface, i.e., (i) an ideal Ga-terminated GaN surface, (ii) the passivation of Ga surface by a monolayer of oxygen (O), and (iii) the presence of an ultrathin Ga2O3 layer. This latter model predicts the formation of a vdW interface and a strong n-type doping of MoS2, in closer agreement with the experimental observations.
Collapse
Affiliation(s)
- Salvatore Ethan Panasci
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Ioannis Deretzis
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Emanuela Schilirò
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Antonino La Magna
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Fabrizio Roccaforte
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Antal Koos
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Miklos Nemeth
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Béla Pécz
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Marco Cannas
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy;
| | - Simonpietro Agnello
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy;
- ATEN Center, University of Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Filippo Giannazzo
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| |
Collapse
|
5
|
Qin Z, Zhang J, Li S. Molybdenum Disulfide as Tunable Electrochemical and Optical Biosensing Platforms for Cancer Biomarker Detection: A Review. BIOSENSORS 2023; 13:848. [PMID: 37754082 PMCID: PMC10527254 DOI: 10.3390/bios13090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a common illness with a high mortality. Compared with traditional technologies, biomarker detection, with its low cost and simple operation, has a higher sensitivity and faster speed in the early screening and prognosis of cancer. Therefore, extensive research has focused on the development of biosensors and the construction of sensing interfaces. Molybdenum disulfide (MoS2) is a promising two-dimensional (2D) nanomaterial, whose unique adjustable bandgap shows excellent electronic and optical properties in the construction of biosensor interfaces. It not only has the advantages of a high catalytic activity and low manufacturing costs, but it can also further expand the application of hybrid structures through different functionalization, and it is widely used in various biosensors fields. Herein, we provide a detailed introduction to the structure and synthesis methods of MoS2, and explore the unique properties and advantages/disadvantages exhibited by different structures. Specifically, we focus on the excellent properties and application performance of MoS2 and its composite structures, and discuss the widespread application of MoS2 in cancer biomarkers detection from both electrochemical and optical dimensions. Additionally, with the cross development of emerging technologies, we have also expanded the application of other emerging sensors based on MoS2 for early cancer diagnosis. Finally, we summarized the challenges and prospects of MoS2 in the synthesis, functionalization of composite groups, and applications, and provided some insights into the potential applications of these emerging nanomaterials in a wider range of fields.
Collapse
Affiliation(s)
- Ziyue Qin
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawei Zhang
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Jeong JH, Jung Y, Park JU, Lee GH. Gate-Tunable Electrostatic Friction of Grain Boundary in Chemical-Vapor-Deposited MoS 2. NANO LETTERS 2023; 23:3085-3089. [PMID: 36780400 DOI: 10.1021/acs.nanolett.2c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) semiconducting materials, such as MoS2, are widely studied owing to their great potential in advanced electronic devices. However, MoS2 films grown using chemical vapor deposition (CVD) exhibit lower-than-expected properties owing to numerous defects. Among them, grain boundary (GB) is a critical parameter that determines electrical and mechanical properties of MoS2. Herein, we report the gate-tunable electrostatic friction of GBs in CVD-grown MoS2. Using atomic force microscopy (AFM), we found that electrostatic friction of MoS2 is generated by the Coulomb interaction between tip and carriers of MoS2, which is associated with the local band structure of GBs. Therefore, electrostatic friction is enhanced by localized charge carrier distribution at GB, which is linearly related to the loading force of the tip. Our study shows a strong correlation between electrostatic friction and localized band structure in MoS2 GB, providing a novel method for identifying and characterizing GBs of polycrystalline 2D materials.
Collapse
Affiliation(s)
- Jae Hwan Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Yeonjoon Jung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Marinov AD, Bravo Priegue L, Shah AR, Miller TS, Howard CA, Hinds G, Shearing PR, Cullen PL, Brett DJL. Ex Situ Characterization of 1T/2H MoS 2 and Their Carbon Composites for Energy Applications, a Review. ACS NANO 2023; 17:5163-5186. [PMID: 36926849 PMCID: PMC10062033 DOI: 10.1021/acsnano.2c08913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in the development of next-generation net zero energy systems has led to the expansion of molybdenum disulfide (MoS2) research in this area. This activity has resulted in a wide range of manufacturing/synthesis methods, controllable morphologies, diverse carbonaceous composite structures, a multitude of applicable characterization techniques, and multiple energy applications for MoS2. To assess the literature trends, 37,347 MoS2 research articles from Web of Science were text scanned to classify articles according to energy application research and characterization techniques employed. Within the review, characterization techniques are grouped under the following categories: morphology, crystal structure, composition, and chemistry. The most common characterization techniques identified through text scanning are recommended as the base fingerprint for MoS2 samples. These include: scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Similarly, XPS and Raman spectroscopy are suggested for 2H or 1T MoS2 phase confirmation. We provide guidance on the collection and presentation of MoS2 characterization data. This includes how to effectively combine multiple characterization techniques, considering the sample area probed by each technique and their statistical significance, and the benefit of using reference samples. For ease of access for future experimental comparison, key numeric MoS2 characterization values are tabulated and major literature discrepancies or currently debated characterization disputes are highlighted.
Collapse
Affiliation(s)
- Alexandar D Marinov
- Electrochemical Innovation Laboratory (EIL), Department of Chemical Engineering, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| | | | - Ami R Shah
- Electrochemical Innovation Laboratory (EIL), Department of Chemical Engineering, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| | - Thomas S Miller
- Electrochemical Innovation Laboratory (EIL), Department of Chemical Engineering, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| | - Christopher A Howard
- Department of Physics & Astronomy, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| | - Gareth Hinds
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Paul R Shearing
- Electrochemical Innovation Laboratory (EIL), Department of Chemical Engineering, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| | - Patrick L Cullen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Dan J L Brett
- Electrochemical Innovation Laboratory (EIL), Department of Chemical Engineering, University College London (UCL), Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
8
|
Askari MB, Salarizadeh P, Veisi P, Samiei E, Saeidfirozeh H, Tourchi Moghadam MT, Di Bartolomeo A. Transition-Metal Dichalcogenides in Electrochemical Batteries and Solar Cells. MICROMACHINES 2023; 14:691. [PMID: 36985098 PMCID: PMC10058047 DOI: 10.3390/mi14030691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
The advent of new nanomaterials has resulted in dramatic developments in the field of energy production and storage. Due to their unique structure and properties, transition metal dichalcogenides (TMDs) are the most promising from the list of materials recently introduced in the field. The amazing progress in the use TMDs for energy storage and production inspired us to review the recent research on TMD-based catalysts and electrode materials. In this report, we examine TMDs in a variety of electrochemical batteries and solar cells with special focus on MoS2 as the most studied and used TMD material.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 7631818356, Iran
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan P.O. Box 7718897111, Iran
| | - Payam Veisi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran
| | - Elham Samiei
- Department of Photonics, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 7631818356, Iran
| | - Homa Saeidfirozeh
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ 18223 Prague, Czech Republic
| | | | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello”, University of Salerno, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
9
|
Rezania H, Abdi M, Astinchap B, Nourian E. The effects of spin-orbit coupling on optical properties of monolayer [Formula: see text] due to mechanical strains. Sci Rep 2023; 13:1159. [PMID: 36670164 PMCID: PMC9859824 DOI: 10.1038/s41598-023-28258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
We have studied the optical conductivity of a quasi two-dimensional [Formula: see text] in the presence of external magnetic field and spin-orbit coupling. Specially, we address the frequency dependence of optical conductivity due to spin-orbit interaction. Using linear response theory the behavior of optical conductivity has been obtained within Green's function method. We have also considered the effects of uniaxial and biaxial in-plane strain on the optical absorption of [Formula: see text] layer. In the absence of external magnetic field with negative uniaxial strain parameter, optical conductivity includes Drude weight at zero frequency limit while Drude weight vanishes for [Formula: see text] layer under positive uniaxial strain. Our results show that the increase of uniaxial positive strain parameter causes to move the position peak to the higher frequencies. In contrast to uniaxial strain case, the Drude weight in optical conductivity appears at positive biaxial strain value 0.15. Also we have studied the effects of magnetic field, electron doping, hole doping in the presence of spin-orbit coupling on frequency dependence of optical conductivity of [Formula: see text] in details. The magnetic field dependence of optical absorption shows a monotonic decreasing behavior for each value of temperature in the absence of strain parameter.
Collapse
Affiliation(s)
- H. Rezania
- Department of Physics, Razi University, Kermanshah, Iran
| | - M. Abdi
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan 66177-15175 Iran
| | - B. Astinchap
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan 66177-15175 Iran
- Research Center for Nanotechnology, University of Kurdistan, Sanandaj, Kurdistan 66177-15175 Iran
| | - E. Nourian
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan 66177-15175 Iran
| |
Collapse
|
10
|
Ghosh S, Yasmin S, Ferdous J, Saha BB. Numerical Analysis of a CZTS Solar Cell with MoS 2 as a Buffer Layer and Graphene as a Transparent Conducting Oxide Layer for Enhanced Cell Performance. MICROMACHINES 2022; 13:1249. [PMID: 36014170 PMCID: PMC9414464 DOI: 10.3390/mi13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Copper zinc tin sulfide (CZTS) can be considered an important absorber layer material for utilization in thin film solar cell devices because of its non-toxic, earth abundance, and cost-effective properties. In this study, the effect of molybdenum disulfide (MoS2) as a buffer layer on the different parameters of CZTS-based solar cell devices was explored to design a highly efficient solar cell. While graphene is considered a transparent conducting oxide (TCO) layer for the superior quantum efficiency of CZTS thin film solar cells, MoS2 acts as a hole transport layer to offer electron-hole pair separation and an electron blocking layer to prevent recombination at the graphene/CZTS interface. This study proposed and analyzed a competent and economic CZTS solar cell structure (graphene/MoS2/CZTS/Ni) with MoS2 and graphene as the buffer and TCO layers, respectively, using the Solar Cell Capacitance Simulator (SCAPS)-1D. The proposed structure exhibited the following enhanced solar cell performance parameters: open-circuit voltage-0.8521 V, short-circuit current-25.3 mA cm-2, fill factor-84.76%, and efficiency-18.27%.
Collapse
Affiliation(s)
- Sampad Ghosh
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh; (S.G.); (S.Y.); (J.F.)
| | - Samira Yasmin
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh; (S.G.); (S.Y.); (J.F.)
| | - Jannatul Ferdous
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh; (S.G.); (S.Y.); (J.F.)
| | - Bidyut Baran Saha
- Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Jalili S, Pakzadiyan A. Investigation of structural, electronic and thermoelectric properties of two-dimensional graphdiyne/borophene monolayers and hetero-bilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:125501. [PMID: 34929681 DOI: 10.1088/1361-648x/ac44d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The integration of dissimilar 2D materials is important for nanoelectronic and thermoelectric applications. Among different polymorphs and different bond geometries, borophene and graphdiyne (GDY) are two promising candidates for these applications. In the present paper, we have studied hetero-bilayers comprising graphdiyne-borophene (GDY-BS) sheets. Three structural models, namely S0, S1and S2have been used for borophene sheets. The optimum interlayer distance for the hetero-bilayers was obtained through binding energy calculations. Then, the structure and electronic properties of the monolayers and hetero-bilayers were individually examined and compared. GDY monolayer was shown to be a semiconductor with a band gap of 0.43 eV, while the borophene monolayers, as well as all studied hetero-bilayers showed metallic behavior. The thermoelectric properties of borophene and GDY monolayers and the GDY-BS bilayers were calculated on the basis of the semi-classical Boltzmann theory. The results showed signs of improvement in the conductivity behavior of the hetero-bilayers. Furthermore, considering the increase in Seebeck coefficient and the conductivity for all the structures after calculating figure of merit and power factor, a higher power factor and more energy generation were observed for bilayers. These results show that the GDY-BS hetero-bilayers can positively affect the performance of thermoelectric devices.
Collapse
Affiliation(s)
- Seifollah Jalili
- Department of Chemistry, K. N. Toosi University of Technology, PO Box 15875-4416, Tehran, Iran
| | - Atena Pakzadiyan
- Department of Chemistry, K. N. Toosi University of Technology, PO Box 15875-4416, Tehran, Iran
| |
Collapse
|
12
|
Morphology and Catalytic Performance of MoS2 Hydrothermally Synthesized at Various pH Values. Catalysts 2021. [DOI: 10.3390/catal11101229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although preparation conditions are known to affect the morphology and catalytic performance of hydrothermally synthesized MoS2, the influence of pH remains unclear. Herein, unsupported MoS2 was prepared from ammonium tetrathiomolybdate (ATTM) by a hydrothermal reaction at various pH values under a reaction pressure of 2 MPa. The physical and chemical properties of the MoS2 samples were characterized, and the catalytic performance for CO methanation was examined. With increasing pH, the morphology of the MoS2 particles transformed from aggregates of irregular grain-like particles to flower-like particles through the agglomeration of fine mesoporous nanoflakes. Hydrothermal synthesis at a pH of 9.5 increased the MoS2 crystallinity by enhancing the stacking of the (0 0 2) lattice plane. The MoS2 samples prepared at pH 7.0 and 9.5 showed increased CO conversion during methanation, which was associated with a low concentration of Mo5+ species and the presence of surface sulfate species. Thus, a high pH during catalyst preparation may promote the complete decomposition of ATTM to MoS2 and the formation of sulfur vacancies, which can facilitate methanation.
Collapse
|
13
|
Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The unique properties of graphene oxide (GO) have attracted the attention of the research community and cost-effective routes for its production are studied. The type and percentage of the oxygen groups that decorate a GO sheet are dependent on the synthesis path, and this path specifies the carbon content of the sheet. The chemical reduction of GO results in reduced graphene oxide (rGO) while the removal of the oxygen groups is also achievable with thermal processes (tpGO). This review article introduces the reader to the carbon allotropes, provides information about graphene which is the backbone of GO and focuses on GO synthesis and properties. The last part covers some characterization techniques of GO (XRD, FTIR, AFM, SEM-EDS, N2 porosimetry and UV-Vis) with a view to the fundamental principles of each technique. Some critical aspects arise for GO synthesized and characterized from our group.
Collapse
|
14
|
Swain G, Sultana S, Parida K. A review on vertical and lateral heterostructures of semiconducting 2D-MoS 2 with other 2D materials: a feasible perspective for energy conversion. NANOSCALE 2021; 13:9908-9944. [PMID: 34038496 DOI: 10.1039/d1nr00931a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fossil fuels as a double-edged sword are essential to daily life. However, the depletion of fossil fuel reservoirs has increased the search for alternative renewable energy sources to procure a more sustainable society. Accordingly, energy production through water splitting, CO2 reduction and N2 reduction via photocatalytic and electrocatalytic pathways is being contemplated as a greener methodology with zero environmental pollution. Owing to their atomic-level thickness, two-dimensional (2D) semiconductor catalysts have triggered the reawakening of interest in the field of energy and environmental applications. Among them, following the unconventional properties of graphene, 2D MoS2 has been widely investigated due to its outstanding optical and electronic properties. However, the photo/electrocatalytic performance of 2D-MoS2 is still unsatisfactory due to its low charge carrier density. Recently, the development of 2D/2D heterojunctions has evoked interdisciplinary research fascination in the scientific community, which can mitigate the shortcomings associated with 2D-MoS2. Following the recent research trends, the present review covers the recent findings and key aspects on the synthetic methods, fundamental properties and practical applications of semiconducting 2D-MoS2 and its heterostructures with other 2D materials such as g-C3N4, graphene, CdS, TiO2, MXene, black phosphorous, and boron nitride. Besides, this review details the viable application of these materials in the area of hydrogen energy production via the H2O splitting reaction, N2 fixation to NH3 formation and CO2 reduction to different value-added hydrocarbons and alcohol products through both photocatalysis and electrocatalysis. The crucial role of the interface together with the charge separation principle between two individual 2D structures towards achieving satisfactory activity for various applications is presented. Overall, the current studies provide a snapshot of the recent breakthroughs in the development of various 2D/2D-based catalysts in the field of energy production, delivering opportunities for future research.
Collapse
Affiliation(s)
- Gayatri Swain
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Jagamohan Nagar, Jagamara, Bhubaneswar-751030, Odisha, India.
| | | | | |
Collapse
|
15
|
Sundararaju U, Mohammad Haniff MAS, Ker PJ, Menon PS. MoS 2/h-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1672. [PMID: 33805402 PMCID: PMC8037851 DOI: 10.3390/ma14071672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. Since self-powered photodetectors do not have an external power supply at zero bias, it is important to ensure that the built-in potential in the device produces a sufficiently thick depletion region that efficiently sweeps the carriers across the junction, resulting in detectable electrical signals even at very low-optical power signals. Therefore, two-dimensional (2D) materials are explored as an alternative to silicon-based active regions in the photodetector. In addition, plasmonic effects coupled with self-powered photodetectors will further enhance light absorption and scattering, which contribute to the improvement of the device's photocurrent generation. Hence, this review focuses on the employment of 2D materials such as graphene and molybdenum disulfide (MoS2) with the insertion of hexagonal boron nitride (h-BN) and plasmonic nanoparticles. All these approaches have shown performance improvement of photodetectors for self-powering applications. A comprehensive analysis encompassing 2D material characterization, theoretical and numerical modelling, device physics, fabrication and characterization of photodetectors with graphene/MoS2 and graphene/h-BN/MoS2 heterostructures with plasmonic effect is presented with potential leads to new research opportunities.
Collapse
Affiliation(s)
- Umahwathy Sundararaju
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (U.S.); (M.A.S.M.H.)
| | | | - Pin Jern Ker
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia;
| | - P. Susthitha Menon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (U.S.); (M.A.S.M.H.)
| |
Collapse
|
16
|
Manamela L, Fru JN, Kyesmen PI, Diale M, Nombona N. Electrically Enhanced Transition Metal Dichalcogenides as Charge Transport Layers in Metallophthalocyanine-Based Solar Cells. Front Chem 2020; 8:612418. [PMID: 33344424 PMCID: PMC7746773 DOI: 10.3389/fchem.2020.612418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) have found application in photovoltaic cells as a charge transporting layer due to their high carrier mobility, chemical stability, and flexibility. In this research, a photovoltaic device was fabricated consisting of copper phthalocyanine (CuPc) as the active layer, exfoliated and Au-doped MoS2, which are n-type and p-type as electron and hole transport layers, respectively. XRD studies showed prominent peaks at (002) and other weak reflections at (100), (103), (006), and (105) planes corresponding to those of bulky MoS2. The only maintained reflection at (002) was weakened for the exfoliated MoS2 compared to the bulk, which confirmed that the material was highly exfoliated. Additional peaks at (111) and (200) planes were observed for the Au doped MoS2. The interlayer spacing (d002) was calculated to be 0.62 nm for the trigonal prismatic MoS2 with the space group P6m2. Raman spectroscopy showed that theE 2 1 g (393 cm-1) and A1g (409 cm-1) peaks for exfoliated MoS2 are closer to each other compared to their bulk counterparts (378 and 408 cm-1, respectively) hence confirming exfoliation. Raman spectroscopy also confirmed doping of MoS2 by Au as the Au-S peak was observed at 320 cm-1. Exfoliation was further confirmed by SEM as when moving from bulky to exfoliated MoS2, a single nanosheet was observed. Doping was further proven by EDS, which detected Au in the sample suggesting the yield of a p-type Au-MoS2. The fabricated device had the architecture: Glass/FTO/Au-MoS2/CuPc/MoS2/Au. A quadratic relationship between I-V was observed suggesting little rectification from the device. Illuminated I-V characterization verified that the device was sensitive and absorbed visible light. Upon illumination, the device was able to absorb photons to create electron-hole pairs and it was evident that semipermeable junctions were formed between Au-MoS2/CuPc and CuPc/MoS2 as holes and electrons were extracted and separated at respective junctions generating current from light. This study indicates that the exfoliated and Au-MoS2 could be employed as an electron transporting layer (ETL) and hole transporting layer (HTL), respectively in fabricating photovoltaic devices.
Collapse
Affiliation(s)
- Lebogang Manamela
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Juvet N. Fru
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Pannan I. Kyesmen
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Mmantsae Diale
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Nolwazi Nombona
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|