1
|
Cho K, Park Y, Jo H, Seo S, Moon J, Lee SJ, Park SY, Yoon SJ, Park J. Identification and Dynamics of Microsecond Long-Lived Charge Carriers for CsPbBr 3 Perovskite Quantum Dots, Featuring Ambient Long-Term Stability. J Phys Chem Lett 2024; 15:5795-5803. [PMID: 38780120 DOI: 10.1021/acs.jpclett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We analyze the stability and photophysical dynamics of CsPbBr3 perovskite quantum dots (PeQDs), fabricated under mild synthetic conditions and embedded in an amorphous silica (SiOx) matrix (CsPbBr3@SiOx), underscoring their sustained performance in ambient conditions for over 300 days with minimal optical degradation. However, this stability comes at the cost of a reduced photoluminescence efficiency. Time-resolved spectroscopic analyses, including flash-photolysis time-resolved microwave conductivity and time-resolved photoluminescence, show that excitons in CsPbBr3@SiOx films decay within 2.5 ns, while charge carriers recombine over approximately 230 ns. This longevity of the charge carriers is due to photoinduced electron transfer to the SiOx matrix, enabling hole retention. The measured hole mobility in these PeQDs is 0.880 cm2 V-1 s-1, underscoring their potential in optoelectronic applications. This study highlights the role of the silica matrix in enhancing the durability of PeQDs in humid environments and modifying exciton dynamics and photoluminescence, providing valuable insights for developing robust optoelectronic materials.
Collapse
Affiliation(s)
- Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youmin Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeonyeong Jo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumi Seo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiyoung Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Jeong Lee
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong Yeon Park
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seog Joon Yoon
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Cabrera-Espinoza A, Collavini S, Sánchez JG, Kosta I, Palomares E, Delgado JL. Photo-Cross-Linked Fullerene-Based Hole Transport Material for Moisture-Resistant Regular Fullerene Sandwich Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38620071 PMCID: PMC11056936 DOI: 10.1021/acsami.4c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Despite the high efficiencies currently achieved with perovskite solar cells (PSCs), the need to develop stable devices, particularly in humid conditions, still remains. This study presents the synthesis of a novel photo-cross-linkable fullerene-based hole transport material named FT12. For the first time, the photo-cross-linking process is applied to PSCs, resulting in the preparation of photo-cross-linked FT12 (PCL FT12). Regular PSCs based on C60-sandwich architectures were fabricated using FT12 and PCL FT12 as dopant-free hole transport layers (HTLs) and compared to the reference spiro-OMeTAD. The photovoltaic results demonstrate that both FT12 and PCL FT12 significantly outperform pristine spiro-OMeTAD regarding device performance and stability. The comparison between devices based on FT12 and PCL FT12 demonstrates that the photo-cross-linking process enhances device efficiency. This improvement is primarily attributed to enhanced charge extraction, partial oxidation of the HTL, increased hole mobility, and improved layer morphology. PCL FT12-based devices exhibit improved stability compared to FT12 devices, primarily due to the superior moisture resistance achieved through photo-cross-linking.
Collapse
Affiliation(s)
- Andrea Cabrera-Espinoza
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San Sebastián 20018, Spain
| | - Silvia Collavini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San Sebastián 20018, Spain
| | - José G. Sánchez
- Institute
of Chemical Research of Catalonia, The Barcelona
Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Ivet Kosta
- CIDETEC, Basque Research and
Technology Alliance (BRTA), Paseo Miramón 196, Donostia/San Sebastián 20014, Spain
| | - Emilio Palomares
- Institute
of Chemical Research of Catalonia, The Barcelona
Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, Tarragona 43007, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Juan Luis Delgado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
3
|
Stanton R, Trivedi DJ. Charge Carrier Dynamics at the Interface of 2D Metal-Organic Frameworks and Hybrid Perovskites for Solar Energy Harvesting. NANO LETTERS 2023; 23:11932-11939. [PMID: 38100376 DOI: 10.1021/acs.nanolett.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Interfacing perovskites with two-dimensional materials such as metal-organic frameworks (MOFs) for improved stability and electron or hole extraction has emerged as a promising path forward for the generation of highly efficient and stable solar cells. In this work, we examine the structural properties and excitation dynamics of two MOF-perovskite systems: UMCM309-a@MAPbI3 and ZrL3@MAPbI3. We find that precise band alignment and electronegativity of the MOF-linkers are necessary to facilitate the capture of excited charge carriers. Furthermore, we demonstrate that intraband relaxation of hot electrons to the MOF subsystem results in optically disallowed transitions across the band gap, suppressing radiative recombination. Furthermore, we elucidate the key mechanisms associated with improved structural stability afforded to the perovskites by the two-dimensional MOFs, highlighting the necessity of broad surface coverage and strong MOF-perovskite interaction.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
4
|
Masawa SM, Bakari R, Xu J, Yao J. Progress and challenges in the fabrication of lead-free all-inorganic perovskites solar cells using solvent and compositional engineering Techniques-A review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Shi R, Fang Q, Vasenko AS, Long R, Fang WH, Prezhdo OV. Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. J Am Chem Soc 2022; 144:19137-19149. [PMID: 36206144 DOI: 10.1021/jacs.2c08627] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.
Collapse
Affiliation(s)
- Ran Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Qiu Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | | | - Run Long
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
6
|
Gebremichael ZT, Ugokwe C, Alam S, Stumpf S, Diegel M, Schubert US, Hoppe H. How varying surface wettability of different PEDOT:PSS formulations and their mixtures affects perovskite crystallization and the efficiency of inverted perovskite solar cells. RSC Adv 2022; 12:25593-25604. [PMID: 36199329 PMCID: PMC9453573 DOI: 10.1039/d2ra03843a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The physico-chemical interaction, surface, and electrical properties of hole transport layers (HTLs) significantly affect the wettability and film crystallization of the deposited perovskite and the corresponding performance of inverted perovskite solar cells (PSCs). One of the most frequently used HTLs for inverted PSCs is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Various commercial PEDOT:PSS formulations have already been tested as HTLs. Until now mixtures of these remained rather unexplored. In this study, three commercially available PEDOT:PSS formulations (PH, PH1000, and AI4083), as well as three mixtures (PH:PH1000, PH:AI4083, and PH:PH1000:AI4083; in a 1 : 1 and 1 : 1 : 1 ratios) were used as HTLs to investigate the crystallization of perovskite films and the performance of associated PSCs. Of the three formulations, PEDOT:PSS PH showed better perovskite crystallization, resulting in better solar cell performance followed by both PH:AI4083 and PH:PH1000:AI4083 layers. The pioneering work on mixing PEDOT:PSS resulted in new combinations of PEDOT:PSS, with new properties (work function, surface wettability, and roughness) which are very important parameters for perovskite crystallization and corresponding device efficiencies and stabilities. All PSCs that use the mixed PEDOT:PSS as HTLs revealed higher fill factor and open-circuit voltage values above 900 mV, which is not the same except for PEDOT:PSS PH. As a result, we believe that such a mixing strategy could aid in the creation of various PEDOT:PSS combinations with tuneable properties for certain applications.
Collapse
Affiliation(s)
- Zekarias Teklu Gebremichael
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- College of Natural and Computational Science, Aksum University P.O. Box 1010 Aksum City Tigray Ethiopia
| | - Chikezie Ugokwe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Shahidul Alam
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Marco Diegel
- Leibniz Institute of Photonics Technology D-07745 Jena Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Harald Hoppe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldt Str. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
7
|
Emery Q, Remec M, Paramasivam G, Janke S, Dagar J, Ulbrich C, Schlatmann R, Stannowski B, Unger E, Khenkin M. Encapsulation and Outdoor Testing of Perovskite Solar Cells: Comparing Industrially Relevant Process with a Simplified Lab Procedure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5159-5167. [PMID: 35108814 DOI: 10.1021/acsami.1c14720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perovskite solar cells (PSCs) have shown great potential for next-generation photovoltaics. One of the main barriers to their commercial use is their poor long-term stability under ambient conditions and, in particular, their sensitivity to moisture and oxygen. Therefore, several encapsulation strategies are being developed in an attempt to improve the stability of PSCs in a humid environment. The lack of common testing procedures makes the comparison of encapsulation strategies challenging. In this paper, we optimized and investigated two common encapsulation strategies: lamination-based glass-glass encapsulation for outdoor operation and commercial use (COM) and a simple glue-based encapsulation mostly utilized for laboratory research purposes (LAB). We compare both approaches and evaluate their effectiveness to impede humidity ingress under three different testing conditions: on-shelf storage at 21 °C and 30% relative humidity (RH) (ISOS-D1), damp heat exposure at 85 °C and 85% RH (ISOS-D3), and outdoor operational stability continuously monitoring device performance for 10 months under maximum power point tracking on a roof-top test site in Berlin, Germany (ISOS-O3). LAB encapsulation of perovskite devices consists of glue and a cover glass and can be performed at ambient temperature, in an inert environment without the need for complex equipment. This glue-based encapsulation procedure allowed PSCs to retain more than 93% of their conversion efficiency after 1566 h of storage in ambient atmosphere and, therefore, is sufficient and suitable as an interim encapsulation for cell transport or short-term experiments outside an inert atmosphere. However, this simple encapsulation does not pass the IEC 61215 damp heat test and hence results in a high probability of fast degradation of the cells under outdoor conditions. The COM encapsulation procedure requires the use of a vacuum laminator and the cells to be able to withstand a short period of air exposure and at least 20 min at elevated temperatures (in our case, 150 °C). This encapsulation method enabled the cells to pass the IEC 61215 damp heat test and even to retain over 95% of their initial efficiency after 1566 h in a damp heat chamber. Above all, passing the damp heat test for COM-encapsulated devices translates to devices fully retaining their initial efficiency for the full duration of the outdoor test (>10 months). To the best of the authors' knowledge, this is one of the longest outdoor stability demonstrations for PSCs published to date. We stress that both encapsulation approaches described in this work are useful for the scientific community as they fulfill different purposes: the COM for the realization of prototypes for long-term real-condition validation and, ultimately, commercialization of perovskite solar cells and the LAB procedure to enable testing and carrying out experiments on perovskite solar cells under noninert conditions.
Collapse
Affiliation(s)
- Quiterie Emery
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Marko Remec
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gopinath Paramasivam
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Stefan Janke
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Janardan Dagar
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Carolin Ulbrich
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Bernd Stannowski
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Eva Unger
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Mark Khenkin
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
8
|
Wang Y, Ahmad I, Leung T, Lin J, Chen W, Liu F, Ng AMC, Zhang Y, Djurišić AB. Encapsulation and Stability Testing of Perovskite Solar Cells for Real Life Applications. ACS MATERIALS AU 2022; 2:215-236. [PMID: 36855381 PMCID: PMC9888620 DOI: 10.1021/acsmaterialsau.1c00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the progress in the development of perovskite solar cells, increased efforts have been devoted to enhancing their stability. With more devices being able to survive harsher stability testing conditions, such as damp heat or outdoor testing, there is increased interest in encapsulation techniques suitable for this type of tests, since both device architecture compatible with increased stability and effective encapsulation are necessary for those testing conditions. A variety of encapsulation techniques and materials have been reported to date for devices with different architectures and tested under different conditions. In this Perspective, we will discuss important factors affecting the encapsulation effectiveness and focus on the devices, which have been subjected to outdoor testing or damp heat testing. In addition to encapsulation requirements for these testing conditions, we will also discuss device requirements. Finally, we discuss possible methods for accelerating the testing of encapsulation and device stability and discuss the future outlook and important issues, which need to be addressed for further advancement of the stability of perovskite solar cells.
Collapse
Affiliation(s)
- Yantao Wang
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ishaq Ahmad
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Tiklun Leung
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jingyang Lin
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong,South
University of Science and Technology, No. 1088, Xueyuan
Rd., Nanshan, 518 055 Shenzhen, China
| | - Wei Chen
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong,South
University of Science and Technology, No. 1088, Xueyuan
Rd., Nanshan, 518 055 Shenzhen, China,National
University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119 077
| | - Fangzhou Liu
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Alan Man Ching Ng
- South
University of Science and Technology, No. 1088, Xueyuan
Rd., Nanshan, 518 055 Shenzhen, China
| | - Yi Zhang
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | |
Collapse
|
9
|
Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation. ENERGIES 2021. [DOI: 10.3390/en14175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The feasibility of mixed-cation mixed-halogen perovskites of formula AxA’1−xPbXyX’zX”3−y−z is analyzed from the perspective of structural stability, opto-electronic properties and possible degradation mechanisms. Using density functional theory (DFT) calculations aided by machine-learning (ML) methods, the structurally stable compositions are further evaluated for the highest absorption and optimal stability. Here, the role of the halogen mixtures is demonstrated in tuning the contrasting trends of optical absorption and stability. Similarly, binary organic cation mixtures are found to significantly influence the degradation, while they have a lesser, but still visible effect on the opto-electronic properties. The combined framework of high-throughput calculations and ML techniques such as the linear regression methods, random forests and artificial neural networks offers the necessary grounds for an efficient exploration of multi-dimensional compositional spaces.
Collapse
|