1
|
Amit S, Gomez-Maldonado D, Bish T, Peresin MS, Davis VA. Properties of APTES-Modified CNC Films. ACS OMEGA 2024; 9:16572-16580. [PMID: 38617654 PMCID: PMC11007690 DOI: 10.1021/acsomega.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Sulfated cellulose nanocrystals' (CNCs') facile aqueous dispersibility enables producing films, fibers, and other materials using only water as a solvent but prevents using sulfated CNCs in applications that require water immersion. We report that modifying CNCs with 3-aminopropyl-triethoxysilane (APTES) via a simple, single-pot reaction scheme dramatically improves the hydrolytic stability of CNC films. The effects of APTES modification on CNCs' properties were studied using attenuated total reflectance Fourier transform infrared spectroscopy, atomic force and optical microscopy, thermogravimetric analysis, dynamic light scattering, and ultimate analysis. Substituting a mere 12.6% of the CNCs' available hydroxyl groups with APTES dramatically increased the hydrolytic stability of shear cast films while only having minor impacts on their mechanical properties. In addition, quartz crystal microbalance with dissipation monitoring (QCMD) and multiparametric surface plasmon resonance (MP-SPR) studies showed that the CNC-APTES films also had a greater irreversible binding with carbofuran, a pesticide and emerging contaminant. These results highlight that APTES modification is a promising method for increasing the utility of sulfated CNCs in sensors, adsorbents, and other applications requiring water immersion.
Collapse
Affiliation(s)
- Sadat
Kamal Amit
- Department
of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Diego Gomez-Maldonado
- Sustainable
Biomaterials Lab, College of Forestry, Wildlife, and the Environment, Auburn University, 602 Duncan Dr, Auburn, Alabama 36849, United States
| | - Tiana Bish
- Department
of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Maria S. Peresin
- Sustainable
Biomaterials Lab, College of Forestry, Wildlife, and the Environment, Auburn University, 602 Duncan Dr, Auburn, Alabama 36849, United States
| | - Virginia A. Davis
- Department
of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Wei X, Lin T, Lu L, Yu M, Yin X. Enhanced homogeneity and flexibility in a humidity sensor using cellulose nanocrystal-based composite film with circular shear flow. Int J Biol Macromol 2024; 263:130293. [PMID: 38382791 DOI: 10.1016/j.ijbiomac.2024.130293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Cellulose nanocrystal (CNC) film is known to be one kind of dynamic color-sensing material, capable of reversible color changes in response to varying humidity levels. However, the brittleness, low hygroscopicity and poor homogeneity of these films have hindered their development. To address this limitation, we present a novel approach where we combine natural deep eutectic solvents (NADES) with sorbitol under the influence of circular shear flow to craft a CNC humidity-sensitive film with enhanced flexibility, hygroscopicity and homogeneity. The inclusion of sorbitol and NADES enhances hygroscopicity and improves the flexibility. Surprisingly, the introduction of circular shear flow was found not only to improve homogeneity, macroscopically and microscopically, but also to further enhance flexibility, toughness, and water absorption capability. The resulting composite films demonstrated highly reversible color changes across the whole visible spectrum depending on the relative humidity, showing their capability to be reliable humidity-sensing materials. Thanks to the improved homogeneity and flexibility, the obtained humidity-sensing composite film can be employed in its entirety without the need for cutting, making it a promising candidate for various applications.
Collapse
Affiliation(s)
- Xiaoyao Wei
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China.
| | - Tao Lin
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Lulu Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Meng Yu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xuefeng Yin
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|
3
|
Chen C, Sun W, Wang J, Gardner DJ. Tunable biocomposite films fabricated using cellulose nanocrystals and additives for food packaging. Carbohydr Polym 2023; 321:121315. [PMID: 37739509 DOI: 10.1016/j.carbpol.2023.121315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
Cellulose nanocrystals (CNCs) are considered a prospective packaging material to partially replace petroleum-based plastics attributed to their renewability, sustainability, biodegradability, and desirable attributes including transparency, oxygen, and oil barrier properties. However, neat CNC films are rigid and too brittle to handle or utilize for packaging applications. Hence different additives, including sorbitol, polyvinyl alcohol (PVA), chitin, and κ-carrageenan (CG) were selected to mix with CNCs for packaging film preparation. The influence of additive categories (plasticizer, nonionic polymer, weak cationic and anionic natural polysaccharide), and their concentrations on the performance of CNC suspensions as well as optical, barrier, mechanical, and thermal properties of CNC films were examined. The morphology and physical characterization including density, equilibrium moisture content, contact angle and water durability of the composite films were also determined. Sorbitol and PVA films had the best visible light transparency; mixing with chitin can effectively improve the water durability of CNC films, and CG changed the CNC film from hydrophilic to hydrophobic. Moreover, all CNC films exhibited sufficient oxygen barrier properties, high PVA content films attained the "very high" barrier grade. Thus, durable CNC films can be obtained by adding proper types and amounts of additives, which provides potential scenarios for practical application of CNC films in food packaging.
Collapse
Affiliation(s)
- Cong Chen
- School of Forest Resources, University of Maine, Orono, ME 04469, United States; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, United States
| | - Wenjing Sun
- Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jinwu Wang
- School of Forest Resources, University of Maine, Orono, ME 04469, United States; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, United States; Forest Products Laboratory, U.S. Forest Service, 1 Gifford Pinchot Drive, Madison, WI 53726, United States.
| | - Douglas J Gardner
- School of Forest Resources, University of Maine, Orono, ME 04469, United States; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, United States
| |
Collapse
|
4
|
Zheng G, Fu P, Li Z, Zhang Y, Huang X, Chen J. Degradation performance of methylene blue in metal nanoparticle modified 3D mesoporous wood microchannels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95425-95437. [PMID: 37550480 DOI: 10.1007/s11356-023-29137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
Wood has a rich three-dimensional pore structure and many bottom-up nanochannels. However, the structure of wood itself has limited ability to adsorb dyes, so the effective combination of the unique structure of wood and Pd NPs was studied to achieve efficient degradation of dyes. First, the three-dimensional structure of natural wood is optimized by combining the complex pore structure of wood with Pd NPs to improve the contact process between the dye and Pd NPs. Then, Pd (II) ion can be well reduced to Pd NPs by wood lignin. In addition, Pd NPs can be fixed by hydroxyl groups on cellulose in wood. The flow state inside Pd NPs/wood film and the contact area between catalyst and dye were discussed in detail by hydrodynamic simulation, which filled the gap. It provides reference for composite structure. When Pd NPs/wood membrane was used to treat methylene blue (MB), the degradation efficiency was up to 96.7%, which was 90% higher than that of natural wood. Its TOF value was 1.82 molMB molPd-1min-1, which was higher than that in the previous literature. Therefore, the novelty of this study is that the mechanism of catalytic degradation of MB by Pd nanoparticles/wood composites is reported for the first time. The internal flow mode and contact condition of the new material are understood, which has a good application prospect.
Collapse
Affiliation(s)
- Guanfeng Zheng
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Peng Fu
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Zhiyu Li
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yuchun Zhang
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinfeng Huang
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jieming Chen
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| |
Collapse
|
5
|
Wei X, Lin T, Wang L, Lin J, Yin X. Research on deep eutectic solvents for the construction of humidity-responsive cellulose nanocrystal composite films. Int J Biol Macromol 2023; 235:123805. [PMID: 36863669 DOI: 10.1016/j.ijbiomac.2023.123805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
Photonic crystal materials based on cellulose nanocrystals (CNC), which are environmentally responsive and green, have attracted widespread attention. To overcome the brittleness of CNC films, many researchers have explored functional additives to improve their performance. In this study, a new green deep eutectic solvents (DESs) and an amino acid-based natural deep eutectic solvents (NADESs) were introduced into CNC suspensions for the first time, and hydroxyl-rich small molecules (glycerol, sorbitol) and polymers (polyvinyl alcohol, polyethylene glycol) were coassembled with the DESs and NADESs to form three-component composite films. The CNC/G/NADESs-Arg three-component film reversibly changed color from blue to crimson as the relative humidity rose from 35 % to 100 %; additionally, the elongation at break increased to 3.05 %, and the Young's modulus decreased to 4.52 GPa. The hydrogen bond network structure provided by trace amounts of the DESs or NADESs not only improved the mechanical properties of the composite films but also increased their water absorption capacities without destroying their optical activities. This allows for the development of more stable CNC films and creates potential for biological applications in the future.
Collapse
Affiliation(s)
- Xiaoyao Wei
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Tao Lin
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Le Wang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Jiacheng Lin
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xuefeng Yin
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|