1
|
Cheng FJ, Ho CY, Li TS, Chen Y, Yeh YL, Wei YL, Huynh TK, Chen BR, Ko HY, Hsueh CS, Tan M, Wu YC, Huang HC, Tang CH, Chen CH, Tu CY, Huang WC. Umbelliferone and eriodictyol suppress the cellular entry of SARS-CoV-2. Cell Biosci 2023; 13:118. [PMID: 37381062 DOI: 10.1186/s13578-023-01070-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.
Collapse
Affiliation(s)
- Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
- Division of Family Medicine, Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
| | - Tzong-Shiun Li
- Department of Plastic Surgery, and Innovation Research Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Lun Yeh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Bo-Rong Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Hung-Yu Ko
- Cognitive Science, University of California San Diego, San Diego, CA, 92093, USA
| | - Chen-Si Hsueh
- Taichung Girls' Senior High School, Taichung, 403, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chia-Hung Chen
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Yen Tu
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan.
- Drug Development Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Chiang CY, Lin YJ, Weng WT, Lin HD, Lu CY, Chen WJ, Shih CY, Lin PY, Lin SZ, Ho TJ, Shibu MA, Huang CY. Recuperative herbal formula Jing Si maintains vasculature permeability balance, regulates inflammation and assuages concomitants of "Long-Covid". Biomed Pharmacother 2023; 163:114752. [PMID: 37116351 PMCID: PMC10130602 DOI: 10.1016/j.biopha.2023.114752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19. In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts. The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells. Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wen-Tsan Weng
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Heng-Dao Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wan-Jing Chen
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan; Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004,Taiwan; Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
3
|
Kong M, Zhu D, Dong J, Kong L, Luo J. Iso-seco-tanapartholide from Artemisia argyi inhibits the PFKFB3-mediated glycolytic pathway to attenuate airway inflammation in lipopolysaccharide-induced acute lung injury mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115781. [PMID: 36195302 DOI: 10.1016/j.jep.2022.115781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese folk medicine, Artemisia argyi H.Lév. & Vaniot (A. argyi) has been used for thousands of years, and it is clinically used to treat bronchitis and asthma. However, the mechanism of action of A. argyi on respiratory tract inflammation is not clear. Accumulating evidence that phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is actively expressed in inflammation. Here, we found that iso-seco-tanapartholide (IST), a sesquiterpene isolated from A. argyi, exhibited potent anti-inflammatory activity and significant inhibition of PFKFB3 expression. Therefore, we evaluated the effect of IST on airway inflammation and revealed its possible mechanisms. AIM OF THE STUDY This study aimed to investigate the protective effect and possible mechanism of IST in lipopolysaccharide (LPS)-induced acute lung injury in mice. MATERIALS AND METHODS In vitro, RAW264.7 cells and BMDMs were stimulated with LPS, and the level of NO and inflammatory factors TNF-α, IL-1β, and IL-6 were detected by Griess reagent and ELISA, respectively. The effect of IST on the levels of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in cells was assayed by western blotting. Lactate and glycolytic phenotypes were detected by lactate kit and Seahorse assay. In vivo, a mouse model of acute lung injury was induced by LPS, and the levels of inflammatory factors were measured by ELISA. Expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in mouse alveolar macrophages by western blotting analysis. Lung permeability assessment by Evans Blue dye assay. H&E staining and Immunocytochemistry were used to observe the protection of IST against lung injury. RESULTS IST significantly reduced LPS-induced expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65). The inhibition of PFKFB3 has an impact on the glycolytic phenotype, such as a reduction in the rate of extracellular acidification (ECAR) and elevated lactate levels, and an increase in the rate of cellular oxygen consumption (OCR). Furthermore, IST inhibited LPS-induced NO release and increased the expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. In vivo, IST reduced pulmonary edema in LPS-induced acute lung injury, improved lung function, and reduced levels of inflammatory factors and lactate secretion. CONCLUSIONS These results suggest that IST improves the characteristics of ALI by inhibiting the expression of the PFKFB3-mediated glycolytic pathway and may be a potential anti-inflammatory agent for inflammation-related lung diseases.
Collapse
Affiliation(s)
- Min Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Junyi Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|