1
|
Gusak MY, Kinzhalov MA, Frontera A, Bokach NA, Kukushkin VY. Metal-Induced Enhancement of Tetrel Bonding. The Case of C⋅⋅⋅X-Ir III (X=Cl, Br) Tetrel Bond Involving a Methyl Group. Chem Asian J 2024; 19:e202400421. [PMID: 38788128 DOI: 10.1002/asia.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
In X-ray structures of the isomorphic mer-[IrX3(THT)(CNXyl)2] (X=Cl 1, Br 2; THT=tetrahydrothiophene; Xyl=2,6-Me2C6H3-) complexes, we revealed short intermolecular contacts between the C-atom of an isocyanide methyl group and halide ligands of another molecule. Geometrical consideration of the X-ray data and analysis of appropriate DFT studies allowed the attribution of these contacts to CMe⋅⋅⋅X-IrIII (X=Cl, Br) tetrel bond. Specifically, through the application of DFT calculations and various theoretical models, the presence of tetrel bonding interactions was validated, and the contribution of the CMe⋅⋅⋅X-IrIII interaction was assessed. The reinforcement of the tetrel bond upon the isocyanide coordination to iridium(III) is substantiated by molecular electrostatic potential (MEP) surface calculations. To distinguish the tetrel bonding characteristics of CMe⋅⋅⋅X-IrIII (X=Cl, Br) interactions from conventional hydrogen bonding, we employed multiple computational methodologies, including Natural Bond Orbital (NBO) analysis and Electron Localization Function (ELF) analysis. Additionally, Energy Decomposition Analysis (EDA) was applied to selected model systems to explore the underlying physical nature of these interactions.
Collapse
Affiliation(s)
- Mikhail Yu Gusak
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5., 07122, Palma de Mallorca (Baleares), Spain
| | - Nadezhda A Bokach
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049, Barnaul, Russian Federation
| |
Collapse
|
2
|
Gupta R, Singha S, Mani D. Cooperativity between Intermolecular Hydrogen and Carbon Bonds in ZY···CH 3CN/CH 3NC···HX Trimers (ZY = H 2O, H 2S, HF, HCl, HBr, NH 3, and H 2CO; HX = HF, HCl, and HBr). J Phys Chem A 2024; 128:4605-4622. [PMID: 38598527 DOI: 10.1021/acs.jpca.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrogen-bonding and carbon-bonding interactions are widespread in nature. We studied the cooperativity between these interactions in 42 trimeric complexes ZY···CH3CN/CH3NC···HX, where ZY molecules are H2O, H2S, HF, HCl, HBr, NH3, and H2CO, and HX molecules are HF, HCl, and HBr. Acetonitrile (CH3CN) and isoacetonitrile (CH3NC) act as hydrogen bond acceptors as well as carbon bond donors in these trimers. Various theoretical methods, such as electronic structure calculations, quantum theory of atoms in molecule (QTAIM), natural bond orbital (NBO), and reduced density gradient analysis, are employed to study these trimers, and the results are compared with the corresponding ZY···CH3CN/CH3NC and CH3CN/CH3NC···HX dimers. Electronic structure calculations are performed at the second-order Mo̷ller-Plesset perturbation theory using the 6-311++G(2d,2p) basis set. We show that both the interactions act synergistically in these trimers leading to an increase in their bond strength as compared to the strength in the individual dimers. The cooperative energies for these trimers are in the range of 0.69 to 3.22 kJ/mol. It is seen that the carbon bonds benefit more from the cooperativity than the hydrogen bonds. The trends of cooperativity and correlations of interaction energies and cooperative energies with relevant QTAIM and NBO parameters are reported.
Collapse
Affiliation(s)
- Riya Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sujan Singha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Devendra Mani
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
4
|
Wu Q, An X, Li Q. Tetrel bond involving -CH 3 group in H nXCH 3 (X = F, Cl, and Br, n = 0; X = O, S, and Se, n = 1; X = N, P, and As, n = 2). Cooperativity with triel bond and beryllium bond. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2186721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Xiulin An
- College of Life Science, Yantai University, Yantai, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
5
|
Calabrese M, Pizzi A, Daolio A, Ursini M, Frontera A, Demitri N, Lenczyk C, Wojciechowski J, Resnati G. Geminal Charge-Assisted Tetrel Bonds in Bis-Pyridinium Methylene Salts. CRYSTAL GROWTH & DESIGN 2023; 23:1898-1902. [PMID: 37426903 PMCID: PMC10324100 DOI: 10.1021/acs.cgd.2c01386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Indexed: 07/11/2023]
Abstract
C(sp3) atoms are known to act as electrophilic sites in self-assembly processes, and in all cases reported till now, they form only one interaction with nucleophiles; that is, they function as monodentate tetrel bond donors. This manuscript reports experimental (X-ray structural analysis) and theoretical evidence (DFT calculations), proving that the methylene carbon in bis-pyridinium methylene salts establishes two short and directional C(sp3)···anion interactions; that is, they function as bidentate tetrel bond donors.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab,
Department of Chemistry, Materials, and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Andrea Pizzi
- NFMLab,
Department of Chemistry, Materials, and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Andrea Daolio
- NFMLab,
Department of Chemistry, Materials, and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Maurizio Ursini
- NFMLab,
Department of Chemistry, Materials, and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Nicola Demitri
- Elettra
Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Carsten Lenczyk
- Bruker
AXS GmbH, Oestliche Rheinbrueckenstr. 49, 76187 Karlsruhe, Germany
| | | | - Giuseppe Resnati
- NFMLab,
Department of Chemistry, Materials, and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
6
|
Dutta J, Routray C, Pandey S, Biswal HS. Intermolecular noncovalent interactions with carbon in solution. Chem Sci 2022; 13:14327-14335. [PMID: 36545132 PMCID: PMC9749111 DOI: 10.1039/d2sc05431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most familiar carbon-centered noncovalent interactions (NCIs) involving an antibonding π*-orbital situated at the Bürgi-Dunitz angle from the electron donor, mostly lone pairs of electrons, is known as n → π* interactions, and if it involves a σ* orbital in a linear fashion, then it is known as the carbon bond. These NCIs can be intra- or inter-molecular and are usually weak in strength but have a paramount effect on the structure and function of small-molecular crystals and proteins. Surprisingly, the experimental evidence of such interactions in the solution phase is scarce. It is even difficult to determine the interaction energy in the solution. Using NMR spectroscopy aided with molecular dynamics (MD) simulation and high-level quantum mechanical calculations, herein we provide the experimental evidence of intermolecular carbon-centered NCIs in solution. The challenge was to find appropriate heterodimers that could sustain room temperature thermal energy and collisions from the solvent molecules. However, after several trial model compounds, the pyridine-N-oxide:dimethyltetracyanocyclopropane (PNO-DMTCCP) complex was found to be a good candidate for the investigation. NBO analyses show that the PNO:DMTCCP complex is stabilized mainly by intermolecular n → π* interaction when a weaker carbon bond gives extra stability to the complex. From the NMR study, it is observed that the NCIs between DMTCCP and PNO are enthalpy driven with an enthalpy change of -28.12 kJ mol-1 and dimerization energy of ∼-38 kJ mol-1 is comparable to the binding energies of a conventional hydrogen-bonded dimer. This study opens up a new strategy to investigate weak intermolecular interactions such as n → π* interaction and carbon bonds in the solution phase.
Collapse
Affiliation(s)
- Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
7
|
Majumdar D, Roy S, Frontera A. The importance of tetrel bonding interactions with carbon in two arrestive iso-structural Cd(ii)-Salen coordination complexes: a comprehensive DFT overview in crystal engineering. RSC Adv 2022; 12:35860-35872. [PMID: 36545098 PMCID: PMC9753102 DOI: 10.1039/d2ra07080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
In this article, we describe the serendipitous synthesis of two remarkable iso-structural Cd(ii)-Salen complexes [L2Cd4(OAc)2(NCS)2] in the presence of H2L and NaSCN {where L = L1 (N,N'-bis(3-methoxysalicylidene)-1,2-diaminopropane) and L = L2 (N,N'-bis(3-methoxysalicylidene)-ethylenediamine) in 1 and 2, respectively}. The complexes were characterized by using elemental analysis, SEM-EDX, PXRD, spectroscopy, and X-ray crystallography. The X-ray crystal structure revealed that both complexes crystallize in the orthorhombic space group Pbcn, with unit cell parameters: a = 20.758(6), b = 11.022(3), c = 21.396(6) Å, V = 4895(2) Å3, and Z = 4. The inner N2O2 and outer O4 compartments are essentially occupied by two different Cd(ii) metal ions resulting from the de-protonated form of the ligand (L2-) with the Cd(1) metal ions adopting a capped octahedral geometry. At the same time, Cd(2) assumes a distorted trigonal prismatic geometry. The solid-state crystal structure involves various non-covalent supramolecular interactions delineated by Hirshfeld Surface and 2D fingerprint plot analysis. Noteworthily, interesting S⋯H, O⋯H, and N⋯H contacts were observed, which have identical percentages in both complexes. The sparse tetrel bonding interactions in the complex, involving the CH3 group, were evaluated in a new dimension of DFT. We observed this privileged bonding landscape that leads to the formation of self-assembled dimers in the crystal complexes. DFT-based MEP, RDG surface, NBO, and QTAIM/NCI plot investigation quantified such unique tetrel bonding interactions.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry Tamralipta Mahavidyalaya Tamluk 721636 West Bengal India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560 012 India
| | - Antonio Frontera
- Department de Quimica, Universitat de les Illes Balears Cra. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| |
Collapse
|
8
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
9
|
Decato DA, Sun J, Boller MR, Berryman OB. Pushing the Limits of the Hydrogen Bond Enhanced Halogen Bond —The Case of the C–H Hydrogen Bond. Chem Sci 2022; 13:11156-11162. [PMID: 36320486 PMCID: PMC9516949 DOI: 10.1039/d2sc03792k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
C–H hydrogen bonds have remarkable impacts on various chemical systems. Here we consider the influence of C–H hydrogen bonds to iodine atoms. Positioning a methyl group between two iodine halogen bond donors of the receptor engendered intramolecular C–H hydrogen bonding (HBing) to the electron-rich belt of both halogen bond donors. When coupled with control molecules, the role of the C–H hydrogen bond was evaluated. Gas-phase density functional theory studies indicated that methyl C–H hydrogen bonds help bias a bidentate binding conformation. Interaction energy analysis suggested that the charged C–H donors augment the halogen bond interaction—producing a >10 kcal mol−1 enhancement over a control lacking the C–H⋯I–C interaction. X-ray crystallographic analysis demonstrated C–H hydrogen bonds and bidentate conformations with triflate and iodide anions, yet the steric bulk of the central functional group seems to impact the expected trends in halogen bond distance. In solution, anion titration data indicated elevated performance from the receptors that utilize C–H Hydrogen Bond enhanced Halogen Bonds (HBeXBs). Collectively, the results suggest that even modest hydrogen bonds between C–H donors and iodine acceptors can influence molecular structure and improve receptor performance. C–H hydrogen bonds to iodine halogen bond donors are shown to improve halogen bonding and molecular preorganization.![]()
Collapse
Affiliation(s)
| | - Jiyu Sun
- University of Montana 32 Campus Drive Missoula MT USA
| | | | | |
Collapse
|
10
|
Liu N, Xie X, Li Q, Scheiner S. Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. Chemphyschem 2021; 22:2305-2312. [PMID: 34436816 DOI: 10.1002/cphc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/14/2022]
Abstract
The T⋅⋅⋅N tetrel bond (TB) formed between TX3 OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug-cc-pVTZ level. Complexes involving TH3 OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3 OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T-O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2 to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaoying Xie
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
11
|
Yang Q, Zhang X, Li Q. Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds. ACS OMEGA 2021; 6:29037-29044. [PMID: 34746592 PMCID: PMC8567400 DOI: 10.1021/acsomega.1c04085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The tetrel bond formed by HC≡CX, H2C=CHX, and H3CCH2X (X=F, Cl, Br, I) as an electron donor and TH3F (T=C, Si, Ge) was explored by ab initio calculations. The tetrel bond formed by H3CCH2X is the strongest, as high as -3.45 kcal/mol for the H3CCH2F···GeH3F dimer, followed by H2C=CHX, and the weakest bond is from HC≡CX, where the tetrel bond can be as small as -0.8 kcal/mol. The strength of the tetrel bond increases in the order of C < Si < Ge. For the H3CCH2X and HC≡CX complexes, the tetrel bond strength shows a similar increasing tendency with the decrease of the electronegativity of the halogen atom. Electrostatic interaction plays the largest role in the stronger tetrel bonds, while dispersion interaction makes an important contribution to the H2C=CHX complexes.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Xiaolong Zhang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| |
Collapse
|
12
|
Liu N, Liu J, Li Q, Scheiner S. Noncovalent bond between tetrel π-hole and hydride. Phys Chem Chem Phys 2021; 23:10536-10544. [PMID: 33899891 DOI: 10.1039/d1cp01245b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The π-hole above the plane of the X2T'Y molecule (T' = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH3)3 (T = Si, Ge, Sn). The resulting THT' tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol-1. F2T'O engages in the strongest such bonds, as compared to F2T'S, Cl2T'O, or Cl2T'S. The bond weakens as T' grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH3)3, even though the minimum in the electrostatic potential around the H is nearly independent of T. The THT' arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H2O forms an OT' tetrel bond with the second π-hole of F2T'O, and strengthened if H2O participates in an OHO H-bond.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Jiaxing Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
13
|
Vennelakanti V, Qi HW, Mehmood R, Kulik HJ. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci 2021; 12:1147-1162. [PMID: 35382134 PMCID: PMC8908278 DOI: 10.1039/d0sc05084a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural (i.e., X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups (e.g., hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. Correlated wavefunction theory predicts and high-resolution crystal structure analysis confirms the important, stabilizing effect of simultaneous hydrogen bond donor and acceptor interactions in proteins.![]()
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Helena W. Qi
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Rimsha Mehmood
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
14
|
Mondal I, Frontera A, Chattopadhyay S. On the importance of RH 3C⋯N tetrel bonding interactions in the solid state of a dinuclear zinc complex with a tetradentate Schiff base ligand. CrystEngComm 2021. [DOI: 10.1039/d0ce01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tetrel bonding and π-stacking interactions in a new dinuclear zinc complex using a tetradentate N2O2 donor Schiff base have been analysed energetically using DFT calculations and several computational tools.
Collapse
Affiliation(s)
- Ipsita Mondal
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata - 700032
- India
| | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
15
|
Abstract
The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
16
|
|
17
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
18
|
McDowell SAC, Wang R, Li Q. Interactions in Model Ionic Dyads and Triads Containing Tetrel Atoms. Molecules 2020; 25:molecules25184197. [PMID: 32937741 PMCID: PMC7570900 DOI: 10.3390/molecules25184197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
The interactions in model ionic YTX3···Z (Y = NC, F, Cl, Br; X = F, Cl, Br, Z = F-, Cl-, Br-, Li+) dyads containing the tetrel atoms, T = C, Si, Ge, were studied using ab initio computational methods, including an energy decomposition analysis, which found that the YTX3 molecules were stabilized by both anions (via tetrel bonding) and cations (via polarization). For the tetrel-bonded dyads, both the electrostatic and polarization forces make comparable contributions to the binding in the C-containing dyads, whereas, electrostatic forces are by far the largest contributor to the binding in the Si- and Ge-containing analogues. Model metastable Li+···NCTCl3···F- (T = C, Si, Ge) triads were found to be lower in energy than the combined energy of the Li+ + NCTCl3 + F- fragments. The pair energies and cooperative energies for these highly polar triads were also computed and discussed.
Collapse
Affiliation(s)
- Sean A. C. McDowell
- Department of Biological and Chemical Sciences, Cave Hill Campus, The University of the West Indies, P.O. Box 64, Bridgetown BB11000, Barbados
- Correspondence: (S.A.C.M.); (Q.L.)
| | - Ruijing Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
- Correspondence: (S.A.C.M.); (Q.L.)
| |
Collapse
|
19
|
Roeleveld JJ, Lekanne Deprez SJ, Verhoofstad A, Frontera A, van der Vlugt JI, Mooibroek TJ. Engineering Crystals Using sp 3 -C Centred Tetrel Bonding Interactions. Chemistry 2020; 26:10126-10132. [PMID: 32557861 PMCID: PMC7496358 DOI: 10.1002/chem.202002613] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Indexed: 11/06/2022]
Abstract
1,1,2,2-Tetracyanocyclopropane derivatives 1 and 2 were designed and synthesized to probe the utility of sp3 -C centred tetrel bonding interactions in crystal engineering. The crystal packing of 1 and 2 and their 1,4-dioxane cocrystals is dominated by sp3 -C(CN)2 ⋅⋅⋅O interactions, has significant C⋅⋅⋅O van der Waals overlap (≤0.266 Å) and DFT calculations indicate interaction energies of up to -11.0 kcal mol-1 . A cocrystal of 2 with 1,4-thioxane reveals that the cyclopropane synthon prefers interacting with O over S. Computational analyses revealed that the electropositive C2 (CN)4 pocket in 1 and 2 can be seen as a strongly directional 'tetrel-bond donor', similar to halogen bond or hydrogen bond donors. This disclosure is expected to have implications for the utility of such 'tetrel bond donors' in molecular disciplines such as crystal engineering, supramolecular chemistry, molecular recognition and medicinal chemistry.
Collapse
Affiliation(s)
- Julius J. Roeleveld
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Siebe J. Lekanne Deprez
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Abraham Verhoofstad
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palmade Mallorca (BalearesSpain
| | - Jarl Ivar van der Vlugt
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
- Institute of ChemistryCarl von Ossietzky University OldenburgCarl-von-Ossietzky-Straße 9–1126219OldenburgGermany
| | - Tiddo Jonathan Mooibroek
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
20
|
|
21
|
McDowell SA. A computational study of XCCl3 (X = NC, F, Cl, Br) interacting with model ions. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Sutradhar D, Chandra AK. Cl⋅⋅⋅Cl Halogen Bonding: Nature and Effect of Substituent at Electron Donor Cl atom. ChemistrySelect 2020. [DOI: 10.1002/slct.201903546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dipankar Sutradhar
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Asit K. Chandra
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
23
|
Deka JKR, Sahariah B, Baruah K, Bar AK, Sarma BK. Conformational control of N-methyl-N,N′-diacylhydrazines by noncovalent carbon bonding in solution. Chem Commun (Camb) 2020; 56:4874-4877. [DOI: 10.1039/d0cc00943a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual N(amide)⋯C–X noncovalent carbon bonding interactions stabilize the trans–cis (t–c) amide bond rotamers of N-methyl-N,N′-diacylhydrazines over the expected trans–trans (t–t) rotamers in solution.
Collapse
Affiliation(s)
| | - Biswajit Sahariah
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
- India
| | - Kalpita Baruah
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
- India
| | - Arun Kumar Bar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Tirupati
- Tirupati 517507
- India
| | - Bani Kanta Sarma
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore 560064
- India
| |
Collapse
|
24
|
Unravelling the Importance of H bonds, σ–hole and π–hole-Directed Intermolecular Interactions in Nature. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Legon AC, Lister DG, Holloway JH, Mani D, Arunan E. Isolation of a Halogen-Bonded Complex Formed between Methane and Chlorine Monofluoride and Characterisation by Rotational Spectroscopy and Ab Initio Calculations. Molecules 2019; 24:molecules24234257. [PMID: 31766716 PMCID: PMC6930488 DOI: 10.3390/molecules24234257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
A halogen-bonded complex formed between methane and chlorine monofluoride has been isolated in the gas phase before the reaction between the components and has been characterised through its rotational spectrum, which is of the symmetric-top type but only exhibits K = 0 type transitions at the low effective temperature of the pulsed-jet experiment. Spectroscopic constants for two low-lying states that result from internal rotation of the CH4 subunit were detected for each of the two isotopic varieties H4C···35ClF and H4C···37ClF and were analysed to show that ClF lies on the symmetry axis with Cl located closer than F to the C atom, at the distance r0(C···Cl) ≅ 3.28 Å and with an intermolecular stretching force constant kσ ≅ 4 N m-1. Ab initio calculations at the explicitly correlated level CCSD(T)(F12c)/cc-pVTZ-F12 show that in the equilibrium geometry, the ClF molecule lies along a C3 axis of CH4 and Cl is involved in a halogen bond. The Cl atom points at the nucleophilic region identified on the C3 axis, opposite the unique C-H bond and somewhere near the C atom and the tetrahedron face centre, with re(C···Cl) = 3.191 Å. Atoms-in-molecules (AIM) theory shows a bond critical point between Cl and C, confirming the presence of a halogen bond. The energy that is required to dissociate the complex from the equilibrium conformation into its CH4 and ClF components is only De ≅ 5 kJ mol-1. A likely path for the internal rotation of the CH4 subunit is identified by calculations at the same level of theory, which also provide the variation of the energy of the system as a function of the motion along that path. The barrier to the motion along the path is only ≅ 20 cm-1.
Collapse
Affiliation(s)
- Anthony C. Legon
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Correspondence: ; Tel.: +44-117-331-7708
| | - David G. Lister
- Dipartimento di Chimica Industriale, Universita di Messina, Casella Postale 29, 1-98166 San’Agata di Messina, Italy
| | - John H. Holloway
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - Devendra Mani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India; (D.M.); (E.A.)
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India; (D.M.); (E.A.)
| |
Collapse
|
26
|
Intermolecular Non-Covalent Carbon-Bonding Interactions with Methyl Groups: A CSD, PDB and DFT Study. Molecules 2019; 24:molecules24183370. [PMID: 31527496 PMCID: PMC6767229 DOI: 10.3390/molecules24183370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023] Open
Abstract
A systematic evaluation of the CSD and the PDB in conjunction with DFT calculations reveal that non-covalent Carbon-bonding interactions with X-CH3 can be weakly directional in the solid state (P ≤ 1.5) when X = N or O. This is comparable to very weak CH hydrogen bonding interactions and is in line with the weak interaction energies calculated (≤ -1.5 kcal·mol-1) of typical charge neutral adducts such as [Me3N-CH3···OH2] (2a). The interaction energy is enhanced to ≤-5 kcal·mol-1 when X is more electron withdrawing such as in [O2N-CH3··O=Cdme] (20b) and to ≤18 kcal·mol-1 in cationic species like [Me3O+-CH3···OH2]+ (8a).
Collapse
|
27
|
Kanouni KE, Benguerba Y, Erto A. Theoretical investigation of the solubility of some antiemetic drugs. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Bartashevich E, Matveychuk Y, Tsirelson V. Identification of the Tetrel Bonds between Halide Anions and Carbon Atom of Methyl Groups Using Electronic Criterion. Molecules 2019; 24:E1083. [PMID: 30893831 PMCID: PMC6471983 DOI: 10.3390/molecules24061083] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
The consideration of the disposition of minima of electron density and electrostatic potential along the line between non-covalently bound atoms in systems with Hal-···CH₃⁻Y (Hal- = Cl, Br; Y = N, O) fragments allowed to prove that the carbon atom in methyl group serves as an electrophilic site provider. These interactions between halide anion and carbon in methyl group can be categorized as the typical tetrel bonds. Statistics of geometrical parameters for such tetrel bonds in CSD is analyzed. It is established that the binding energy in molecular complexes with tetrel bonds correlate with the potential acting on an electron in molecule (PAEM). The PAEM barriers for tetrel bonds show a similar behavior for both sets of complexes with Br- and Cl- electron donors.
Collapse
Affiliation(s)
- Ekaterina Bartashevich
- Research Laboratory of Multiscale Modelling of Multicomponent Functional Materials, REC Nanotechnology, South Ural State University, 454080 Chelyabinsk, Russia.
| | - Yury Matveychuk
- Research Laboratory of Multiscale Modelling of Multicomponent Functional Materials, REC Nanotechnology, South Ural State University, 454080 Chelyabinsk, Russia.
| | - Vladimir Tsirelson
- Research Laboratory of Multiscale Modelling of Multicomponent Functional Materials, REC Nanotechnology, South Ural State University, 454080 Chelyabinsk, Russia.
- Quantum Chemistry Department, D.I. Mendeleev University of Chemical Technology, 125047 Moscow, Russia.
| |
Collapse
|
29
|
Qi HW, Kulik HJ. Evaluating Unexpectedly Short Non-covalent Distances in X-ray Crystal Structures of Proteins with Electronic Structure Analysis. J Chem Inf Model 2019; 59:2199-2211. [DOI: 10.1021/acs.jcim.9b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Hexacoordinated Tetrel‐Bonded Complexes between TF4(T=Si, Ge, Sn, Pb) and NCH: Competition between σ‐ and π‐Holes. Chemphyschem 2019; 20:959-966. [DOI: 10.1002/cphc.201900072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/15/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mariusz Michalczyk
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał Wysokiński
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan, Utah 84322-0300 United States
| |
Collapse
|
31
|
Dual Geometry Schemes in Tetrel Bonds: Complexes between TF₄ (T = Si, Ge, Sn) and Pyridine Derivatives. Molecules 2019; 24:molecules24020376. [PMID: 30669688 PMCID: PMC6359171 DOI: 10.3390/molecules24020376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
When an N-base approaches the tetrel atom of TF4 (T = Si, Ge, Sn) the latter molecule deforms from a tetrahedral structure in the monomer to a trigonal bipyramid. The base can situate itself at either an axial or equatorial position, leading to two different equilibrium geometries. The interaction energies are considerably larger for the equatorial structures, up around 50 kcal/mol, which also have a shorter R(T··N) separation. On the other hand, the energy needed to deform the tetrahedral monomer into the equatorial structure is much higher than the equivalent deformation energy in the axial dimer. When these two opposite trends are combined, it is the axial geometry which is somewhat more stable than the equatorial, yielding binding energies in the 8–34 kcal/mol range. There is a clear trend of increasing interaction energy as the tetrel atom grows larger: Si < Ge < Sn, a pattern which is accentuated for the binding energies.
Collapse
|
32
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH 3NH 3PbI 3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci Rep 2019; 9:50. [PMID: 30631082 PMCID: PMC6328624 DOI: 10.1038/s41598-018-36218-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
The CH3NH3PbI3 (methylammonium lead triiodide) perovskite semiconductor system has been viewed as a blockbuster research material during the last five years. Because of its complicated architecture, several of its technological, physical and geometrical issues have been examined many times. Yet this has not assisted in overcoming a number of problems in the field nor in enabling the material to be marketed. For instance, these studies have not clarified the nature and type of hydrogen bonding and other noncovalent interactions involved; the origin of hysteresis; the actual role of the methylammonium cation; the nature of polarity associated with the tetragonal geometry; the unusual origin of various frontier orbital contributions to the conduction band minimum; the underlying phenomena of spin-orbit coupling that causes significant bandgap reduction; and the nature of direct-to-indirect bandgap transition features. Arising from many recent reports, it is now a common belief that the I···H–N interaction formed between the inorganic framework and the ammonium group of CH3NH3+ is the only hydrogen bonded interaction responsible for all temperature-dependent geometrical polymorphs of the system, including the most stable one that persists at low-temperatures, and the significance of all other noncovalent interactions has been overlooked. This study focussed only on the low temperature orthorhombic polymorph of CH3NH3PbI3 and CD3ND3PbI3, where D refers deuterium. Together with QTAIM, DORI and RDG based charge density analyses, the results of density functional theory calculations with PBE with and without van der Waals corrections demonstrate that the prevailing view of hydrogen bonding in CH3NH3PbI3 is misleading as it does not alone determine the a−b+a− tilting pattern of the PbI64− octahedra. This study suggests that it is not only the I···H/D–N, but also the I···H/D–C hydrogen/deuterium bonding and other noncovalent interactions (viz. tetrel-, pnictogen- and lump-hole bonding interactions) that are ubiquitous in the orthorhombic CH3NH3PbI3/CD3ND3PbI3 perovskite geometry. Their interplay determines the overall geometry of the polymorph, and are therefore responsible in part for the emergence of the functional optical properties of this material. This study also suggests that these interactions should not be regarded as the sole determinants of octahedral tilting since lattice dynamics is known to play a critical role as well, a common feature in many inorganic perovskites both in the presence and the absence of the encaged cation, as in CsPbI3/WO3 perovskites, for example.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan. .,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan. .,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan.
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
33
|
Dependence of NMR chemical shifts upon CH bond lengths of a methyl group involved in a tetrel bond. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.10.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Prathap A, Ravi A, Pathan JR, Sureshan KM. Halobenzyl alcohols as structurally simple organogelators. CrystEngComm 2019. [DOI: 10.1039/c9ce01008d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report 11 simple halobenzyl alcohols, each comprising of only 16 atoms, as organogelators for aliphatic hydrocarbon solvents. Their self-assembly is similar in both gel and crystal states and involve OH⋯O, CH⋯O, CH⋯π, O⋯X, CH⋯X and X⋯X interactions.
Collapse
Affiliation(s)
- Annamalai Prathap
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Arthi Ravi
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Javed R. Pathan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| |
Collapse
|
35
|
Tetrel Bond between 6-OTX₃-Fulvene and NH₃: Substituents and Aromaticity. Molecules 2018; 24:molecules24010010. [PMID: 30577501 PMCID: PMC6337681 DOI: 10.3390/molecules24010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022] Open
Abstract
Carbon bonding is a weak interaction, particularly when a neutral molecule acts as an electron donor. Thus, there is an interesting question of how to enhance carbon bonding. In this paper, we found that the –OCH3 group at the exocyclic carbon of fulvene can form a moderate carbon bond with NH3 with an interaction energy of about −10 kJ/mol. The –OSiH3 group engages in a stronger tetrel bond than does the –OGeH3 group, while a reverse result is found for both –OSiF3 and –OGeF3 groups. The abnormal order in the former is mainly due to the stronger orbital interaction in the –OSiH3 complex, which has a larger deformation energy. The cyano groups adjoined to the fulvene ring not only cause a change in the interaction type, from vdW interactions in the unsubstituted system of –OCF3 to carbon bonding, but also greatly strengthen tetrel bonding. The formation of tetrel bonding has an enhancing effect on the aromaticity of the fulvene ring.
Collapse
|
36
|
Mundlapati VR, Sahoo DK, Bhaumik S, Jena S, Chandrakar A, Biswal HS. Noncovalent Carbon-Bonding Interactions in Proteins. Angew Chem Int Ed Engl 2018; 57:16496-16500. [DOI: 10.1002/anie.201811171] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- V. Rao Mundlapati
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Suman Bhaumik
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Subhrakant Jena
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Amol Chandrakar
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
37
|
Mundlapati VR, Sahoo DK, Bhaumik S, Jena S, Chandrakar A, Biswal HS. Noncovalent Carbon-Bonding Interactions in Proteins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- V. Rao Mundlapati
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Suman Bhaumik
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Subhrakant Jena
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Amol Chandrakar
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
38
|
Frontera A, Bauzá A. S⋅⋅⋅Sn Tetrel Bonds in the Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Organotin Molecules. Chemistry 2018; 24:16582-16587. [PMID: 30240074 DOI: 10.1002/chem.201804676] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/20/2022]
Abstract
In this study, a PDB (Protein Data Bank) analysis and theoretical calculations (PBE0-D3/def2-TZVP level of theory) were combined to analyze the impact of S⋅⋅⋅Sn tetrel-bonding interactions in the activation mechanism of peroxisome proliferator-activated receptors (PPARs) by two organotin derivatives, triphenyltin (TPT) and tributyltin (TBT). The presence of a covalently bonded CYS285 to the organotin molecule was found to be key to enhance the σ-hole-donor ability of the tin atom, thus strengthening the tetrel-bonding interaction with a sulfur atom belonging to a vicinal methionine residue (MET364).
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma, de Mallorca, Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma, de Mallorca, Spain
| |
Collapse
|
39
|
Naseer MM, Hussain M, Bauzá A, Lo KM, Frontera A. Intramolecular Noncovalent Carbon Bonding Interaction Stabilizes the cis Conformation in Acylhydrazones. Chempluschem 2018; 83:881-885. [PMID: 31950685 DOI: 10.1002/cplu.201800329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Noncovalent carbon bonding, a recently explored σ-hole interaction, was hitherto supposed to be a weak and structure-guided interaction. Here, its role in the intramolecular stabilization of the cis conformation of the amide moiety in acylhydrazones is described. The calculations reveal an electron donation from the lone pair of the nitrogen atom to the empty antibonding C-N orbital [LP(N)→BD*(C-N)] with a concomitant stabilization energy of E(2) =1.2 kcal mol-1 .
Collapse
Affiliation(s)
| | - Majid Hussain
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Kong Mun Lo
- Research Centre for Crystalline Materials School of Science and Technology, Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
40
|
Escudero-Adán EC, Bauzá A, Lecomte C, Frontera A, Ballester P. Boron triel bonding: a weak electrostatic interaction lacking electron-density descriptors. Phys Chem Chem Phys 2018; 20:24192-24200. [PMID: 30209451 DOI: 10.1039/c8cp04401e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an effort to describe π-hole interactions, we undertook accurate high-resolution X-ray diffraction analyses of single crystals of 1,4-dinitrobenzene, a co-crystal of cis-tartaric acid and bis-pyridine N-oxide and the hydrochloride of B-4-pyridinylboronic acid. We selected these three compounds owing to the π-hole accessibility features that the sp2 hybridized B, C and N atoms provide, thus allowing us to compare the fundamental characteristics of π-hole interactions using Bader's Atom in Molecules (AIM) theory. This particular study required extremely accurate experimental diffraction data, because the interaction of interest is weak. As shown by the experimental charge density maps of the -YO2 (Y = B, C, N) units, we assign the depletion of electron-density present in the central boron, carbon and nitrogen atoms (electrophilic π-holes) as the main origin for the establishment of intermolecular Lewis acid-Lewis base attractive interaction with complementary electron-rich regions. Unexpectedly, the Bader's analyses of both experimentally and theoretically calculated charge distribution maps for the solid involving the - BO2H2 group do not show the presence of bond paths, neither of the bond critical points, between the interacting electron rich sites and the boron or carbon atoms featuring the electron hole. In contrast, these topological descriptors of chemical interactions for the AIM theory were easily located in the solid-state structures of the compounds involving the carboxylic and the nitro groups.
Collapse
Affiliation(s)
- Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paısos Catalans, 16, 43007, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
41
|
Scheiner S. Ability of IR and NMR Spectral Data to Distinguish between a Tetrel Bond and a Hydrogen Bond. J Phys Chem A 2018; 122:7852-7862. [DOI: 10.1021/acs.jpca.8b07631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
42
|
Bauzá A, Frontera A. Tetrel Bonding Interactions in Perchlorinated Cyclopenta- and Cyclohexatetrelanes: A Combined DFT and CSD Study. Molecules 2018; 23:molecules23071770. [PMID: 30029469 PMCID: PMC6100242 DOI: 10.3390/molecules23071770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 11/23/2022] Open
Abstract
In this manuscript, we combined DFT calculations (PBE0-D3/def2-TZVP level of theory) and a Cambridge Structural Database (CSD) survey to evaluate the ability of perchlorinated cyclopenta- and cyclohexatetrelanes in establishing tetrel bonding interactions. For this purpose, we used Tr5Cl10 and Tr6Cl12 (Tr = Si and Ge) and HCN, HF, OH− and Cl− as electron donor entities. Furthermore, we performed an Atoms in Molecules (AIM) analysis to further describe and characterize the interactions studied herein. A survey of crystal structures in the CSD reveals that close contacts between Si and lone-pair-possessing atoms are quite common and oriented along the extension of the covalent bond formed by the silicon with the halogen atom.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| |
Collapse
|
43
|
Regium-π vs Cation-π Interactions in M2 and MCl (M = Cu, Ag and Au) Complexes with Small Aromatic Systems: An ab Initio Study. INORGANICS 2018. [DOI: 10.3390/inorganics6030064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
44
|
Frontera A, Bauzá A. Regium-π bonds: An Unexplored Link between Noble Metal Nanoparticles and Aromatic Surfaces. Chemistry 2018. [PMID: 29521478 DOI: 10.1002/chem.201800820] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability of metal clusters involving elements from group 11 (Ag, Cu, Au) to favorably interact with π systems of different size and electronic nature was evaluated at the PBE0-D3/def2-TZVPP//PBE0-D3/def2-TZVP level of theory. The M9 clusters (M=Cu, Ag, Au) were used as σ-hole and σ-lump donors, and benzene, trifluorobenzene, and hexafluorobenzene as aromatic rings. In addition, the study was expanded to the analysis of extended π systems by using naphthalene and anthracene as well as their corresponding perfluorinated derivatives. Furthermore, Bader's theory of Atoms in Molecules as well as natural bonding orbital and spin-density calculations were used to further investigate and characterize the regium-π and σ-lump complexes described herein. Apparently, regium-π bonds have not previously been described in the literature and may be of great importance in the understanding of organocatalytic processes involving aromatic substrates as well as in the design of new materials based on this novel subclass of σ-hole bonding.
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
45
|
Dong W, Yang X, Cheng J, Li W, Li Q. Comparison for σ-hole and π-hole tetrel-bonded complexes involving F 2 C CFTF 3 (T C, Si, and Ge): Substitution, hybridization, and solvation effects. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
Zierkiewicz W, Michalczyk M, Scheiner S. Implications of monomer deformation for tetrel and pnicogen bonds. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00430g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monomer rearrangement raises the interaction energy by up to 20 kcal mol−1and intensifies its σ-hole by a factor of 1.5–2.9.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
48
|
Hussain M, Bauzá A, Frontera A, Lo KM, Naseer MM. Structure guided or structure guiding? Mixed carbon/hydrogen bonding in a bis-Schiff base of N-allyl isatin. CrystEngComm 2018. [DOI: 10.1039/c7ce01697b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A supramolecular motif listed as ‘carbon bonded’ or ‘hydrogen bonded’ may have the character of both. We highlight the hybrid character of the non-covalent interaction in a bis-Schiff base of N-allyl isatin by combining theory and experiment.
Collapse
Affiliation(s)
- Majid Hussain
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Antonio Bauzá
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Kong Mun Lo
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Selangor Darul Ehsan
- Malaysia
| | | |
Collapse
|
49
|
Ghosh K, Harms K, Bauzá A, Frontera A, Chattopadhyay S. Heteronuclear cobalt(iii)/sodium complexes with salen type compartmental Schiff base ligands: methylene spacer regulated variation in nuclearity. Dalton Trans 2018; 47:331-347. [DOI: 10.1039/c7dt03929h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three unique heteronuclear cobalt(iii)/sodium Schiff base complexes have been synthesized and characterized. Nuclearity of these complexes changes as a result of alteration of the steric hindrance in the ligand moiety.
Collapse
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata 700032
- India
| | - Klaus Harms
- Fachbereich Chemie
- Philipps-Universität Marburg
- Hans-Meerwein-Strasse
- D-35032 Marburg
- Germany
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | | |
Collapse
|
50
|
Wei Y, Li Q, Yang X, McDowell SAC. Intramolecular Si⋅⋅⋅O Tetrel Bonding: Tuning of Substituents and Cooperativity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuanxin Wei
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Xin Yang
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Sean A. C. McDowell
- Department of Biological and Chemical Sciences; The University of the West Indies, Cave Hill Campus; Barbados
| |
Collapse
|