1
|
Kumar P, Singh D, Gupta I, Singh S, Nehra S, Kumar R. Combustion derived single phase Y 4Al 2O 9:Tb 3+ nanophosphor: crystal chemistry and optical analysis for solid state lighting applications. RSC Adv 2023; 13:7752-7765. [PMID: 36909772 PMCID: PMC9993242 DOI: 10.1039/d3ra00735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Cool green light emanating monoclinic Y4-x Al2O9:xTb3+ (x = 1-5 mol%) nanophosphors have been fabricated through gel-combustion method. X-ray diffraction and transmission electron-microscopy data have been utilized to assess their structural and microstructural characteristics, including cell parameters and crystallite size. Uneven aggregation of nanoparticles in the nano-scale with distinctive porosity can be seen in the TEM micrograph. Kubelka-Munk model imitative diffuse reflectance spectra and an optical band gap of 5.67 eV for the Y3.97Al2O9:0.03Tb3+ nanophosphor revealed high optical quality in the samples, which were thought to be non-conducting. The emission (PL) and excitation (PLE) spectra as well as lifetime measurements have been used to determine the luminescence characteristics of the synthesized nanophosphors. The emission spectra show two color i.e. blue color due to 5D3 → 7F J (J = 4 and 5) transitions and green color due to 5D4 → 7F J (J = 3, 4, 5 and 6) transitions. The most dominant transition (5D4 → 7F5) at 548 nm was responsible for the greenish color in focused nanocrystalline samples. Calculated colorimetric characteristics such as CIE, and CCT along with color purity of the synthesized nanocrystalline materials make them the best candidate for the solid-state lighting (SSL).
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Isha Gupta
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Sitender Singh
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Simran Nehra
- CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi-110012 India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 Haryana India
| |
Collapse
|
2
|
Lv X, Lin H, Xu J, Lin S, Cheng Y, Wang Y. K +-doping-induced highly efficient red emission in CsPb(Br,I) 3 quantum dot glass toward Rec. 2020 displays. OPTICS LETTERS 2022; 47:1431-1434. [PMID: 35290331 DOI: 10.1364/ol.450730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
It is demonstrated that the incorporation of K+ into CsPb(Br,I)3 perovskite quantum dot glass leads to the simultaneous increases of quantum efficiency and phase stability. The latent mechanism is analyzed via the microstructural and spectroscopic studies. The constructed prototype white-light-emitting diode device yields an ultra-wide color gamut attaining 96% Rec. 2020 standard.
Collapse
|
3
|
Ricci F, Marougail V, Varnavski O, Wu Y, Padgaonkar S, Irgen-Gioro S, Weiss EA, Goodson T. Enhanced Exciton Quantum Coherence in Single CsPbBr 3 Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy. ACS NANO 2021; 15:12955-12965. [PMID: 34346667 DOI: 10.1021/acsnano.1c01615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cesium-halide perovskite quantum dots (QDs) have gained tremendous interest as quantum emitters in quantum information processing applications due to their optical and photophysical properties. However, engineering excitonic states in quantum dots requires a deep knowledge of the coherent dynamics of their excitons at a single-particle level. Here, we use femtosecond time-resolved two-photon near-field scanning optical microscopy (NSOM) to reveal coherences involving a single cesium lead bromide perovskite QD (CsPbBr3) at room temperature. We show that, compared to other nonperovskite nanoparticles, the electronic coherence on a single perovskite QD has a relatively long lifetime of ca. 150 fs, whereas CdSe QDs have exciton coherence times shorter than 75 fs at room temperature. One possible explanation for the longer coherence time observed for the CsPbBr3 perovskite system is related to the exciton fine structure of these perovskite QDs compared to other nanoparticles. These perovskite QDs exhibit interesting optical properties that differ from those of the traditional QDs including bright triplet exciton states. In fact, due to the small amplitude of the energy gap fluctuations of dipole-allowed triplet states in perovskite QDs, the coherent superposition could be preserved for longer times. Furthermore, single-particle excitation approach implemented in this work allows us to remove effects of heterogeneity that are usually present in ensemble averaging experiments at room temperature. The realization of quantum-mechanical phase-coherence of a charge carrier that can operate at room temperature is an issue of great importance for the potential application of coherent electronic phenomena in electronic and optoelectronic devices. These interesting findings provide further evidence of the great potential of these perovskite QDs as candidates for quantum computing and information processing applications.
Collapse
Affiliation(s)
- Federica Ricci
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Veronica Marougail
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Yang Q, Zhu JC, Li ZX, Chen XS, Jiang YX, Luo ZW, Wang P, Xie HL. Luminescent Liquid Crystals Based on Carbonized Polymer Dots and Their Polarized Luminescence Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26522-26532. [PMID: 34057832 DOI: 10.1021/acsami.1c08641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Traditional luminescent liquid crystals (LLCs) suffer from fluorescence quenching caused by aggregation, which greatly limits their further application. In this work, a kind of novel LLCs (named carbonized polymer dot liquid crystals (CPD-LCs)) are designed and successfully synthesized through grafting the rod-shaped liquid crystal (LC) molecules of 4'-cyano-4-(4″-bromohexyloxy) biphenyl on the surface of CPDs. The peripheral LC molecules not only increase the distance between different CPDs to prevent them from aggregating and reduce intermolecular energy resonance transfer but also make this LLC have an ordered arrangement. Thus, the obtained CPD-LCs show good LC property and excellent high luminous efficiency with an absolute photoluminescence quantum yield of 14.52% in the aggregated state. Furthermore, this kind of CPD-LC is used to fabricate linearly polarized devices. The resultant linearly polarized dichroic ratio (N) and polarization ratio (ρ) are 2.59 and 0.44, respectively. Clearly, this type of CPD-LC shows promising applications for optical devices.
Collapse
Affiliation(s)
- Qian Yang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ji-Chun Zhu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhen-Xing Li
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiao-Shuai Chen
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yu-Xing Jiang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhi-Wang Luo
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
5
|
Du X, Liu Y, Wang F, Zhao D, Gleeson HF, Luo D. A Fluorescence Sensor for Pb 2+ Detection Based on Liquid Crystals and Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22361-22367. [PMID: 33969689 DOI: 10.1021/acsami.1c02585] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy metals, such as lead ions, are regarded as the main environmental contaminants and have a negative impact on human bodies, making detection technologies of lead ions critical. However, most existing detection methods suffer from time consumption, complicated sample pretreatment, and expensive equipment, which hinder their broad use in real-time detection. Herein, we show a new fluorescence sensor for detecting lead ions derived from liquid crystals doped with an aggregation-induced emission luminogen. The mechanism is based on the variation of fluorescence intensity caused by the disturbance of an ordered liquid crystal configuration in the presence of Pb2+, induced by DNAzyme and its catalytic cleavage. The proposed fluorescence sensor exhibits a low detection limit of 0.65 nM, which is 2 orders of magnitude lower than that previously reported in an optical sensor based on liquid crystals. The detection range of the Pb2+ fluorescence sensor is broad, from 20 nM to 100 μM, and it also selects lead ions from numerous metal ions exactly, resulting in a highly sensitive, highly selective, simple, and low-cost detection strategy of Pb2+ with potential applications in chemical and biological fields. This approach to designing a liquid crystal fluorescence sensor offers an inspiring stage for detecting biomacromolecules or other heavy metal ions by varying decorated molecules.
Collapse
Affiliation(s)
- Xiaoxue Du
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongyu Zhao
- School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Krieg F, Sercel PC, Burian M, Andrusiv H, Bodnarchuk MI, Stöferle T, Mahrt RF, Naumenko D, Amenitsch H, Rainò G, Kovalenko MV. Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr 3 Nanocrystals and Their Superfluorescent Assemblies. ACS CENTRAL SCIENCE 2021; 7:135-144. [PMID: 33532576 PMCID: PMC7845019 DOI: 10.1021/acscentsci.0c01153] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/18/2023]
Abstract
Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX3 NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr3 NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures-accelerated collective emission arising from the coherent coupling of the emitting dipoles.
Collapse
Affiliation(s)
- Franziska Krieg
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Peter C. Sercel
- Center
for Hybrid Organic Inorganic Semiconductors for Energy, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Max Burian
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Hordii Andrusiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Thilo Stöferle
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Rainer F. Mahrt
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Noculak A, Boehme SC, Aebli M, Shynkarenko Y, McCall KM, Kovalenko MV. Pressure‐Induced Perovskite‐to‐non‐Perovskite Phase Transition in CsPbBr
3. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Agnieszka Noculak
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| | - Simon C. Boehme
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| | - Yevhen Shynkarenko
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| | - Kyle M. McCall
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf Überlandstrasse 129 CH-8600 Switzerland
| |
Collapse
|
8
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
9
|
Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands. NANOMATERIALS 2020; 10:nano10112171. [PMID: 33143226 PMCID: PMC7692729 DOI: 10.3390/nano10112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In–P–Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m2, a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%.
Collapse
|
10
|
Effect of Processing Technique Factors on Structure and Photophysical Properties of Perovskite Absorption Layer by Using Two-Step Spin-Coating Method. CRYSTALS 2020. [DOI: 10.3390/cryst10090761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The investigation of crystal growth is crucial for us to improve the film quality and photophysical properties of CH3NH3PbI3 (MAPbI3). In the two-step spin-coating process, the crystal structure could be modulated by controlling the growth conditions of PbI2 and CH3NH3I (MAI) layers. In this paper, the PbI2 layer was treated with annealing under different times. A liquid–liquid diffusion (LLD) mechanism is proposed to modify the deposition of MAI precursor solution and enhance the flatness of organic–inorganic hybrid perovskite film. Furthermore, the perovskite films are prepared using different concentrations of MAI. The evolution process of perovskite structure is observed by modulating the concentration of MAI. The spin-coating of moderate MAI tends to form high quality MAPbI3 films with enhanced absorption and carrier extraction capabilities. The high concentration of MAI would cause the perovskite phase transition, which provides a novel perspective to modulate the structure of organic–inorganic hybrid perovskite in the two-step spin-coating process, although it deteriorates the device performance.
Collapse
|
11
|
Shangguan Z, Zheng X, Zhang J, Lin W, Guo W, Li C, Wu T, Lin Y, Chen Z. The Stability of Metal Halide Perovskite Nanocrystals-A Key Issue for the Application on Quantum-Dot-Based Micro Light-Emitting Diodes Display. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1375. [PMID: 32679801 PMCID: PMC7408616 DOI: 10.3390/nano10071375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
The metal halide perovskite nanocrystal (MHP-NC), an easy-to-fabricate and low cost fluorescent material, is recognized to be among the promising candidates of the color conversion material in the micro light-emitting diode (micro-LED) display, providing that the stability can be further enhanced. It is found that the water steam, oxygen, thermal radiation and light irradiation-four typical external factors in the ambient environment related to micro-LED display-can gradually alter and destroy the crystal lattice. Despite the similar phenomena of photoluminescence quenching, the respective encroaching processes related to these four factors are found to be different from one another. The encroaching mechanisms are collected and introduced in separate categories with respect to each external factor. Thereafter, a combined effect of these four factors in an environment mimicking real working conditions of micro-LED display are also introduced. Finally, recent progress on the full-color application of MHP-NC is also reviewed in brief.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China; (Z.S.); (X.Z.); (J.Z.); (W.L.); (W.G.); (Z.C.)
| | - Tingzhu Wu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China; (Z.S.); (X.Z.); (J.Z.); (W.L.); (W.G.); (Z.C.)
| | - Yue Lin
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China; (Z.S.); (X.Z.); (J.Z.); (W.L.); (W.G.); (Z.C.)
| | | |
Collapse
|
12
|
Zhao B, Zhu L, Sun L, Wang S, Lu J, Zhang J, Han Q, Dong H, Tang B, Zhou B, Liu F, Shen X, Lu W. Strong fluorescence blinking of large-size all-inorganic perovskite nano-spheres. NANOTECHNOLOGY 2020; 31:215204. [PMID: 32015226 DOI: 10.1088/1361-6528/ab7250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrated strong fluorescence blinking on large all-inorganic perovskite (CsPbBr3) nano-spheres. By performing (time-resolved) micro-photoluminescence (μ-PL) measurements, the unique blinking characteristics of the as-grown nano-spheres with diameters of hundred nanometers, are clearly observed. Blinking has no obvious on/off states, which is different from the blinking characteristics of quantum dots. It is believed that the blinking of fluorescence is caused by metastable defect-induced trapping of carriers on the surface of the nano-spheres, because dramatically suppressed fluorescence blinking and the decay rates of ultrafast carriers are realized by surface passivation of the nano-spheres. Surface defects are closely related to the ambient atmosphere, which has been further confirmed by PL measurements of the as-grown nano-spheres in vacuum. Additionally, we also found that the fluorescence blinking was significantly suppressed as the sample size increased, which can be attributed to the large-size induced average effect on fluorescence blinking. These results may be important for understanding the mechanism of the fluorescence blinking of perovskite materials and for developing optical devices with good fluorescence stability.
Collapse
Affiliation(s)
- Binbin Zhao
- Department of Physics, Shanghai Normal University, Shanghai, 200234, People's Republic of China. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
He J, He Z, Towers A, Zhan T, Chen H, Zhou L, Zhang C, Chen R, Sun T, Gesquiere AJ, Wu ST, Dong Y. Ligand assisted swelling-deswelling microencapsulation (LASDM) for stable, color tunable perovskite-polymer composites. NANOSCALE ADVANCES 2020; 2:2034-2043. [PMID: 36132500 PMCID: PMC9417300 DOI: 10.1039/d0na00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskite nanocrystals (PNCs), with excellent electronic and optical properties, are promising for a variety of optoelectronic and photonic applications. However, the instability issue still impedes their practical applications. Here a ligand-assisted swelling-deswelling microencapsulation (LASDM) strategy is proposed and evaluated for improving the stability and photoluminescence (PL) performance of PNCs. With ligand assistance, well dispersed and intimately passivated PNCs in polymer matrices are obtained. Compared with the previously reported swelling-deswelling microencapsulation (SDM) strategy, the proposed method can provide better nanocrystal size control and surface coordination. Thus, full-color perovskite-polymer composites (PPCs) with unprecedented environmental stability can be achieved and concentration quenching can be avoided in polymer matrices. The excellent color purity, color tunability, optical density variability and environmental stability make PPCs highly promising for a range of PL applications, such as tailored lighting and transparent projection displays. Moreover, the simple, low cost, scalable process and the compatibility of this method with a group of polymer matrices should pave the way for PPCs to meet the requirements for practical use.
Collapse
Affiliation(s)
- Juan He
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
| | - Ziqian He
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
| | - Andrew Towers
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
- Department of Chemistry, University of Central Florida Orlando FL 32816 USA
| | - Tao Zhan
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
| | - Hao Chen
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
| | - Le Zhou
- Department of Materials Science & Engineering, University of Central Florida Orlando Florida 32816 USA
| | - Caicai Zhang
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
- Department of Materials Science & Engineering, University of Central Florida Orlando Florida 32816 USA
| | - Ran Chen
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Materials Science and Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Ted Sun
- Sun Innovations, Inc 43241 Osgood Road Fremont CA 94539 USA
| | - Andre J Gesquiere
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
- Department of Chemistry, University of Central Florida Orlando FL 32816 USA
- Department of Materials Science & Engineering, University of Central Florida Orlando Florida 32816 USA
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
| | - Yajie Dong
- College of Optics and Photonics, University of Central Florida Orlando Florida 32816 USA
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
- Department of Materials Science & Engineering, University of Central Florida Orlando Florida 32816 USA
| |
Collapse
|
14
|
Li P, Duan Y, Lu Y, Xiao A, Zeng Z, Xu S, Zhang J. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr 3 quantum dot glass for WLEDs. NANOSCALE 2020; 12:6630-6636. [PMID: 32186315 DOI: 10.1039/d0nr01207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CsPbX3(Cl, Br, I) perovskite quantum dot glass has been widely reported, and the discovery of next-generation perovskite luminescent materials has been challenged by doping rare earth activators with energy-level transitions. In this work, we report a novel Eu-doped quantum dot glass material with tunable luminescence properties. The structure characteristics and tunable luminescence mechanism were investigated by combining X-ray diffraction, X-ray photoelectric spectroscopy, excitation and emission spectra. It was found that Eu ions replaced the lattice of Pb in CsPbBr3 quantum dots and formed CsEuBr3 quantum dots, which resulted in a blue emission. Meanwhile, a green emission from CsPbBr3 quantum dots and a red emission originally from Eu3+ in the glass matrix can also be observed by controlling the heat treatment temperature. A light-emitting diode is designed based on the prepared Eu-doped quantum dot glass without doping any phosphors, and a warm light with CCT at 4075 K is obtained. The present work provides a new luminescence tunable design principle for europium-doped quantum dot glass materials and could inspire the future exploration of rare earth ion-doped quantum dot glass materials.
Collapse
Affiliation(s)
- Panpan Li
- Institute of Optoelectronic Materials and Devices China Jiliang University, Hangzhou, 310018, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
He Z, He J, Zhang C, Wu S, Dong Y. Swelling‐Deswelling Microencapsulation‐Enabled Ultrastable Perovskite−Polymer Composites for Photonic Applications. CHEM REC 2019; 20:672-681. [DOI: 10.1002/tcr.201900074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Ziqian He
- College of Optics and PhotonicsUniversity of Central Florida Orlando, Florida 32816 USA
| | - Juan He
- College of Optics and PhotonicsUniversity of Central Florida Orlando, Florida 32816 USA
| | - Caicai Zhang
- Department of Materials Science & EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
- NanoScience Technology CenterUniversity of Central Florida Orlando, Florida 32826 USA
| | - Shin‐Tson Wu
- College of Optics and PhotonicsUniversity of Central Florida Orlando, Florida 32816 USA
| | - Yajie Dong
- College of Optics and PhotonicsUniversity of Central Florida Orlando, Florida 32816 USA
- Department of Materials Science & EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
- NanoScience Technology CenterUniversity of Central Florida Orlando, Florida 32826 USA
| |
Collapse
|
16
|
Krieg F, Ong QK, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent MJ, Krumeich F, Bodnarchuk MI, Shorubalko I, Stellacci F, Kovalenko MV. Stable Ultraconcentrated and Ultradilute Colloids of CsPbX 3 (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand. J Am Chem Soc 2019; 141:19839-19849. [PMID: 31763836 PMCID: PMC6923794 DOI: 10.1021/jacs.9b09969] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Attaining thermodynamic stability of colloids in a broad
range
of concentrations has long been a major thrust in the field of colloidal
ligand-capped semiconductor nanocrystals (NCs). This challenge is
particularly pressing for the novel NCs of cesium lead halide perovskites
(CsPbX3; X = Cl, Br) owing to their highly dynamic and
labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced
natural phospholipid, serves as a tightly binding surface-capping
ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6–10 nm) and allowing for long-term retention of the
colloidal and structural integrity of CsPbX3 NCs in a broad
range of concentrations—from a few ng/mL to >400 mg/mL (inorganic
core mass). The high colloidal stability achieved with this long-chain
zwitterionic ligand can be rationalized with the Alexander–De
Gennes model that considers the increased particle–particle
repulsion due to branched chains and ligand polydispersity. The versatility
and immense practical utility of such colloids is showcased by the
single NC spectroscopy on ultradilute samples and, conversely, by
obtaining micrometer-thick, optically homogeneous dense NC films in
a single spin-coating step from ultraconcentrated colloids.
Collapse
Affiliation(s)
- Franziska Krieg
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Quy K Ong
- Institute of Materials , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Max Burian
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Denys Naumenko
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/V , 8010 Graz , Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/V , 8010 Graz , Austria
| | - Adrian Süess
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Matthias J Grotevent
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Frank Krumeich
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | | | - Francesco Stellacci
- Institute of Materials , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| |
Collapse
|
17
|
Abstract
Chip-On-Board Light-Emitting Diodes (COB LED) are increasingly more common. Their development in recent years has directly contributed to increasing the power of LED sources, whilst simultaneously increasing the luminous flux from the entire COB. Consequently, it has led to new developments in some applications. Information regarding the size of the light source luminous surface and luminance distribution on its surface is critical for a designer whilst designing optical systems. The purpose of this conducted research was to establish to what extent luminance distribution is even on the examined COB LEDs. In order to verify luminance distributions on an LED surface, direct measurements with a matrix luminance measuring device were made. As a result of the research, it has been observed that luminance distribution is not even, and in many cases luminance maximum does not fall in the geometric center of the luminous surface, which was initially expected. So, it has been concluded that while designing optical systems for COB LEDs, irregular luminance distribution on their surface needs to be considered.
Collapse
|
18
|
Shynkarenko Y, Bodnarchuk MI, Bernasconi C, Berezovska Y, Verteletskyi V, Ochsenbein ST, Kovalenko MV. Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes. ACS ENERGY LETTERS 2019; 4:2703-2711. [PMID: 31737780 PMCID: PMC6849336 DOI: 10.1021/acsenergylett.9b01915] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Cesium lead halide nanocrystals (CsPbX3 NCs) are new inorganic light sources covering the entire visible spectral range and exhibiting near-unity efficiencies. While the last years have seen rapid progress in green and red electroluminescence from CsPbX3 NCs, the development of blue counterparts remained rather stagnant. Controlling the surface state of CsPbX3 NCs had proven to be a major factor governing the efficiency of the charge injection and for diminishing the density of traps. Although didodecyldimethylammonium halides (DDAX; X = Br, Cl) had been known to improve the luminescence of CsPbX3 NCs when applied postsynthetically, they had not been used as the sole long-chain ammonium ligand directly in the synthesis of these NCs. Herein we report a facile, direct synthesis of DDAX-stabilized CsPbX3 NCs. We then demonstrate blue and green light-emitting diodes, characterized by the electroluminescence at 463-515 nm and external quantum efficiencies of 9.80% for green, 4.96% for sky-blue, and 1.03% for deep-blue spectral regions.
Collapse
Affiliation(s)
- Yevhen Shynkarenko
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maryna I. Bodnarchuk
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Caterina Bernasconi
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Yuliia Berezovska
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Vladyslav Verteletskyi
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Stefan T. Ochsenbein
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
19
|
Yan F, Tan ST, Li X, Demir HV. Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902079. [PMID: 31650694 DOI: 10.1002/smll.201902079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Facile solution processing lead halide perovskite nanocrystals (LHP-NCs) exhibit superior properties in light generation, including a wide color gamut, a high flexibility for tuning emissive wavelengths, a great defect tolerance and resulting high quantum yield; and intriguing electric feature of ambipolar transport with moderate and comparable mobility. As a result, LHP-NCs have accomplished great achievements in various light generation applications, including color converters for lighting and display, light-emitting diodes, low threshold lasing, X-ray scintillators, and single photon emitters. Herein, the considerable progress that has been made thus far is reviewed along with the current challenges and future prospects in the light generation applications of LHP-NCs.
Collapse
Affiliation(s)
- Fei Yan
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Swee Tiam Tan
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiao Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
20
|
Wang J, Li M, Shen W, Su W, He R. Ultrastable Carbon Quantum Dots-Doped MAPbBr 3 Perovskite with Silica Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34348-34354. [PMID: 31455081 DOI: 10.1021/acsami.9b12058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Having suffered from intrinsic structural lability, perovskite quantum dots (PQDs) are extremely unstable under high-temperature and moisture conditions, which have greatly limited their applications. In this work, we propose a novel method to synthesize ultrastable carbon quantum dots (CQDs)-doped methylamine (MA) lead bromide PQDs with SiO2 encapsulation (CQDs-MAPbBr3@SiO2). The kernel CQDs-MAPbBr3 is formed by the interaction of carboxyl-rich CQDs with MAPbBr3 via H-bond, which greatly improves the thermal stability of CQDs-MAPbBr3. Furthermore, highly compact SiO2 encapsulates the proposed CQDs-MAPbBr3 via a facile in situ growth strategy, which effectively enhances the water resistance and air stability of CQDs-MAPbBr3@SiO2. As a result, the proposed nanomaterial shows extremely high water stability in aqueous solution for over 9 months and ideal thermal stability with strong fluorescence (FL) emission after 150 °C annealing. Based on the superior stability and ultrahigh FL efficiency of this proposed nanomaterial, a primary sensing method for ion (Ag+ and Zn2+) FL detection has been developed and the mechanism of PQDs-based ion determination has also been discussed, thus exhibiting the potential applications of CQDs-MAPbBr3@SiO2 in the area of FL assay and environment monitoring.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics , Guangxi Teachers Education University , Nanning 530001 , P. R. China
| | - Ming Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Wei Shen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics , Guangxi Teachers Education University , Nanning 530001 , P. R. China
| | - Rongxing He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
21
|
Optical Characteristics of ZnCuInS/ZnS (Core/Shell) Nanocrystal Flexible Films Under X-Ray Excitation. CRYSTALS 2019. [DOI: 10.3390/cryst9070343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this article is to evaluate optical characteristics, such as the intrinsic conversion efficiency and the inherent light propagation efficiency of three polymethyl methacrylate (PMMA)/methyl methacrylate (MMA) composite ZnCuInS/ZnS (core/shell) nanocrystal flexible films. The concentrations of these were 100 mg/mL, 150 mg/mL, and 250 mg/mL, respectively. Composite films were prepared by homogeneously diluting dry powder quantum dot (QD) samples in toluene and subsequently mixing these with a PMMA/MMA polymer solution. The absolute luminescence efficiency (AE) of the films was measured using X-ray excitation. A theoretical model describing the optical photon propagation in scintillator materials was used to calculate the fraction of the generated optical photons passed through the different material layers. Finally, the intrinsic conversion efficiency was calculated by considering the QD quantum yield and the optical photon emission spectrum.
Collapse
|
22
|
Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting. NANOMATERIALS 2019; 9:nano9020176. [PMID: 30717075 PMCID: PMC6409700 DOI: 10.3390/nano9020176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 11/27/2022]
Abstract
Advances in materials, color rendering metrics and studies on biological effects promote the design for novel solid-state lighting sources that are highly energy efficient, excellent at color rendering and healthy for human circadian rhythms. Recently, perovskite nanocrystals have emerged as narrow-band, low-cost, color-tunable downconverters, elevating the design and development of solid-state lighting to a new level. Here, we perform a systematic optimization of using perovskite nanocrystals as downconverters to simultaneously optimize vision energy efficiency, color rendering quality and circadian action effect of lighting sources at both fixed and tunable color temperatures. Further analysis reveals the inherent differences in central wavelength and bandwidth preferences for different cases, providing a general guideline for designing circadian lighting. Through systematic optimization, highly efficient circadian lighting sources with excellent color rendering can be achieved.
Collapse
|