1
|
Guan W, Zhang C, Miao T, Dong C, Li L, Yuan X, Zhao D, Ai R, Zhang X, Sun M, Kang H, Nan Y. The Potential of the lncRNAs ADAMTSL4-AS1, AC067931 and SOCS2-AS1 in Peripheral Blood Mononuclear Cells as Novel Diagnostic Biomarkers for Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1221-1233. [PMID: 38957436 PMCID: PMC11217008 DOI: 10.2147/jhc.s463804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) might be closely associated with hepatocellular carcinoma (HCC) progression and could serve as diagnostic and prognostic markers. This study aimed to investigate lncRNA-based diagnostic biomarkers for hepatitis B virus (HBV)-associated HCC. Materials and Methods High-throughput transcriptome sequencing was conducted on the liver tissues of 15 patients with HBV-associated liver diseases (5 with chronic hepatitis B [CHB], 5 with liver cirrhosis [LC], and 5 with HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze lncRNA expressions. Potential diagnostic performance for HBV-associated HCC screening was evaluated. Results Through trend analysis and functional analysis, we found that 8 lncRNAs were gradually upregulated and 1 lncRNA was progressively downregulated by regulation of target mRNAs and downstream HCC-associated signaling pathways. The validation of dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) and HCC tissues by qRT-PCR revealed that ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were significantly increased in HCC compared with CHB and cirrhosis. Moreover, differentially expressed lncRNAs were aberrantly elevated in Huh7, Hep3B, HepG2, and HepG2.215 cells compared with LX2 cells. Furthermore, ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were identified as novel biomarkers for HBV-associated HCC. For distinguishing HCC from CHB, ADAMTSL4-AS1, AC067931, and SOCS2-AS1 combined with alpha-fetoprotein (AFP) had an area under the curve (AUC) of 0.945 (sensitivity, 83.9%; specificity, 89.8%). Similarly, for distinguishing HCC from LC, this combination had an AUC of 0.871 (sensitivity, 91.1%; specificity, 68.2%). Furthermore, this combination showed the highest diagnostic ability to distinguish HCC from CHB and LC (AUC, 0.905; sensitivity, 91.1%; specificity, 75.3%). In particular, this combination identified AFP-negative (AFP < 20 ng/mL) (AUC = 0.814), small (AUC = 0.909), and early stage (AUC = 0.863) tumors. Conclusion ADAMTSL4-AS1, SOCS2-AS1, and AC067931 combined with AFP in PBMCs may serve as a noninvasive diagnostic biomarker for HBV-associated HCC, especially AFP-negative, small, and early stage HCC.
Collapse
Affiliation(s)
- Weiwei Guan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
- Department of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Congyue Zhang
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Tongguo Miao
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Chen Dong
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Lu Li
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Rong Ai
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Mengjiao Sun
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Haiyan Kang
- Department of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| |
Collapse
|
2
|
Sucre S, Bullock A, Peters ML. Efficacy of dual checkpoint inhibitors in a patient with a mixed hepatocellular cholangiocarcinoma. BMJ Case Rep 2024; 17:e255003. [PMID: 38697678 PMCID: PMC11085902 DOI: 10.1136/bcr-2023-255003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
A woman in her 60s was diagnosed with a metastatic, unresectable rare histological type of liver cancer; combined hepatocellular cholangiocarcinoma. She had palliative chemotherapy, initially with gemcitabine and cisplatin, and then with oxaliplatin, L-folinic acid and fluorouracil. Both treatment strategies demonstrated disease progression, and somatic mutation profiling revealed no actionable mutations. The patient was started on immuno-oncology (IO) with nivolumab and ipilimumab, followed by maintenance nivolumab. She has achieved a sustained ongoing partial response since the start of this therapy for at least 12 months. The outcome in this patient is in keeping with the growing evidence of the role that IO agents have in metastatic biliary tract cancer and also serves to highlight their importance in mixed histology liver tumours.
Collapse
Affiliation(s)
- Santiago Sucre
- Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Andrea Bullock
- Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mary Linton Peters
- Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Qiu Z, Yuan X, Wang X, Liu S. Crosstalk between m6A modification and non-coding RNAs in HCC. Cell Signal 2024; 117:111076. [PMID: 38309550 DOI: 10.1016/j.cellsig.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, with high morbidity and occurrence. Although various therapeutic approaches have been rapidly developed in recent years, the underlying molecular mechanisms in the pathogenesis of HCC remain enigmatic. The N6-methyladenosine (m6A) RNA modification is believed to regulate RNA metabolism and further gene expression. This process is intricately regulated by multiple regulators, such as methylases and demethylases. Non-coding RNAs (ncRNAs) are involved in the regulation of the epigenetic modification, mRNA transcription and other biological processes, exhibiting crucial roles in tumor occurrence and development. The m6A-ncRNA interaction has been implicated in the malignant phenotypes of HCC and plays an important role in drug resistance. This review summarizes the effect of m6A-ncRNA crosstalk on HCC progression and their clinical implications as prognostic markers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Zitong Qiu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, PR China
| | - Xinyue Wang
- International Education College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Songjiang Liu
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
4
|
Shu B, Zhou Y, Lei G, Peng Y, Ding C, Li Z, He C. TRIM21 is critical in regulating hepatocellular carcinoma growth and response to therapy by altering the MST1/YAP pathway. Cancer Sci 2024; 115:1476-1491. [PMID: 38475938 PMCID: PMC11093211 DOI: 10.1111/cas.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer is the sixth most common cancer and the third leading cause of cancer-related death globally. Despite efforts being made in last two decades in cancer diagnosis and treatment, the 5-year survival rate of liver cancer remains extremely low. TRIM21 participates in cancer metabolism, glycolysis, immunity, chemosensitivity and metastasis by targeting various substrates for ubiquitination. TRIM21 serves as a prognosis marker for human hepatocellular carcinoma (HCC), but the mechanism by which TRIM21 regulates HCC tumorigenesis and progression remains elusive. In this study, we demonstrated that TRIM21 protein levels were elevated in human HCC. Elevated TRIM21 expression was associated with HCC progression and poor survival. Knockdown of TRIM21 in HCC cell lines significantly impaired cell growth and metastasis and enhanced sorafenib-induced toxicity. Mechanistically, we found that knockdown of TRIM21 resulted in cytosolic translocation and inactivation of YAP. At the molecular level, we further identified that TRIM21 interacted and induced ubiquitination of MST1, which resulted in MST1 degradation and YAP activation. Knockdown of MST1 or overexpression of YAP reversed TRIM21 knockdown-induced impairment of HCC growth and chemosensitivity. Taken together, the current study demonstrates a novel mechanism that regulates the Hippo pathway and reveals TRM21 as a critical factor that promotes growth and chemoresistance in human HCC.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yingxia Zhou
- Department of Surgical Operation, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Guoqiong Lei
- Department of NeurosurgeryBrain Hospital of Hunan Province (The Second People's Hospital of Human Province)ChangshaHunanChina
| | - Yu Peng
- Department of General Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Cong Ding
- Department of PharmacyHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- Department of PharmacyHunan Normal University School of MedicineChangshaHunanChina
| | - Chao He
- Department of General Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Chen L, Xiao H, Wu Y, Yan D, Shan M, Sun L, Yan X, Liu D, Li T, Zhang Y, Xiang L, Chen A, Li S, Xiang W, Ni Z, He F, Yang M, Lian J. CircPHKB decreases the sensitivity of liver cancer cells to sorafenib via miR-1234-3p/CYP2W1 axis. Genomics 2024; 116:110764. [PMID: 38113974 DOI: 10.1016/j.ygeno.2023.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.
Collapse
Affiliation(s)
- Lingxi Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hanxi Xiao
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Dongjing Yan
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Li Xiang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China.
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China.
| | - Jiqin Lian
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Chen W, Shu K, Cai C, Ding J, Zhang X, Zhang W, Wang K. Prognostic value and immune landscapes of immunogenic cell death-related lncRNAs in hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20230634. [PMID: 37584192 PMCID: PMC10500227 DOI: 10.1042/bsr20230634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Both immunogenic cell death (ICD) and long noncoding RNAs (lncRNAs) are strongly associated with tumor development, but the mechanism of action of ICD-associated lncRNAs in hepatocellular carcinoma (HCC) remains unclear. METHODS We collected data from 365 HCC patients from The Cancer Genome Atlas (TCGA) database. We formulated a prognostic signature of ICD-associated lncRNAs and a nomogram to predict prognosis. To explore the potential mechanisms and provide clinical guidance, survival analysis, enrichment analysis, tumor microenvironment analysis, tumor mutation burden (TMB), and drug sensitivity prediction were conducted based on the subgroups obtained from the risk score. RESULTS A prognostic signature of seven ICD-associated lncRNAs was constructed. Kaplan-Meier (K-M) survival curves showed a more unfavorable outcome in high-risk patients. The nomogram had a higher predictive value than the nomogram constructed without the risk model. Enrichment analysis confirmed that risk lncRNAs were closely associated with cell proliferation and mitosis. Most of the immune checkpoints currently used in therapy (e.g., PDCD1 and CTLA4) appeared to be elevated in high-risk patients. Tumor microenvironment analysis showed differential expression of lymphocytes (including natural killer cells, regulatory T cells, etc.) in the high-risk group. TMB had a higher incidence of mutations in the high-risk group (P=0.004). Chemotherapy drug sensitivity prediction provides effective guidelines for individual therapy. RT-qPCR of human HCC tissues verified the accuracy of the model. CONCLUSION We constructed an effective prognostic signature for patients with HCC using seven ICD-lncRNAs, which provides guidance for the prognostic assessment and personalized treatment of patients.
Collapse
Affiliation(s)
- Wanying Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Kexin Shu
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chenxi Cai
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiatong Ding
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kang Wang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Minaei N, Ramezankhani R, Tamimi A, Piryaei A, Zarrabi A, Aref AR, Mostafavi E, Vosough M. Immunotherapeutic approaches in Hepatocellular carcinoma: Building blocks of hope in near future. Eur J Cell Biol 2023; 102:151284. [PMID: 36584598 DOI: 10.1016/j.ejcb.2022.151284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic cancer and is among the major causes of mortality due to cancer. Due to the lack of efficient conventional therapeutic options for this cancer, particularly in advanced cases, novel treatments including immunotherapy have been considered. However, despite the encouraging clinical outcomes after implementing these innovative approaches, such as oncolytic viruses (OVs), adoptive cell therapies (ACT), immune checkpoint blockades (ICBs), and cancer vaccines, several factors have restricted their therapeutic effect. The main concern is the existence of an immunosuppressive tumor microenvironment (TME). Combination of different ICBs or ICBs plus tyrosine kinase inhibitors have shown promising results in overcoming these limiting factors to some extent. Combination of programmed cell death ligand-1 (PD-L1) antibody Atezolizumab and vascular endothelial growth factor (VEGF) antibody Bevacizumab has become the standard of care in the first-line therapy for untestable HCC, approved by regulatory agencies. This paper highlighted a wide overview of the direct and indirect immunotherapeutic strategies proposed for the treatment of HCC patients and the common challenges that have hindered their further clinical applications.
Collapse
Affiliation(s)
- Neda Minaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Roya Ramezankhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Development and Regeneration, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital-Huddinge, Sweden.
| |
Collapse
|
8
|
Yang L, Guan Y, Liu Z. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma. Front Pharmacol 2023; 14:1177405. [PMID: 37124203 PMCID: PMC10133567 DOI: 10.3389/fphar.2023.1177405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that involves the accumulation of iron-dependent lipid peroxides and plays a vital role in the tumorigenesis, development, and drug resistance of various tumors such as hepatocellular carcinoma (HCC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) participate in the initiation and progression of HCC, either act as oncogenes or tumor suppressors. Recent studies have shown that ncRNAs can regulate ferroptosis in HCC cells, which would affect the tumor progression and drug resistance. Therefore, clarifying the underlying role of ferroptosis and the regulatory role of ncRNA on ferroptosis in HCC could develop new treatment interventions for this disease. This review briefly summarizes the role of ferroptosis and ferroptosis-related ncRNAs in HCC tumorigenesis, progression, treatment, drug resistance and prognosis, for the development of potential therapeutic strategies and prognostic markers in HCC patients.
Collapse
Affiliation(s)
| | - Yu Guan
- *Correspondence: Yu Guan, ; Zhanbing Liu,
| | | |
Collapse
|