1
|
Gaspar J, Trewick SA, Gibb GC. De-novo assembly of four rail (Aves: Rallidae) genomes: A resource for comparative genomics. Ecol Evol 2024; 14:e11694. [PMID: 39026944 PMCID: PMC11255403 DOI: 10.1002/ece3.11694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Rails are a phenotypically diverse family of birds that includes 130 species and displays a wide distribution around the world. Here we present annotated genome assemblies for four rails from Aotearoa New Zealand: two native volant species, pūkeko Porphyrio melanotus and mioweka Gallirallus philippensis, and two endemic flightless species takahē Porphyrio hochstetteri and weka Gallirallus australis. Using the sequence read data, heterozygosity was found to be lowest in the endemic flightless species and this probably reflects their relatively small populations. The quality checks and comparison with other rallid genomes showed that the new assemblies were of good quality. This study significantly increases the number of available rallid genomes and will enable future genomic studies on the evolution of this family.
Collapse
Affiliation(s)
- Julien Gaspar
- School of Food Technology and Natural Sciences, Wildlife and Ecology GroupMassey UniversityPalmerston NorthNew Zealand
- Royal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Steve A. Trewick
- School of Food Technology and Natural Sciences, Wildlife and Ecology GroupMassey UniversityPalmerston NorthNew Zealand
| | - Gillian C. Gibb
- School of Food Technology and Natural Sciences, Wildlife and Ecology GroupMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
2
|
Verry AJF, Mas-Carrió E, Gibb GC, Dutoit L, Robertson BC, Waters JM, Rawlence NJ. Ancient mitochondrial genomes unveil the origins and evolutionary history of New Zealand's enigmatic takahē and moho. Mol Ecol 2024; 33:e17227. [PMID: 38018770 DOI: 10.1111/mec.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Many avian species endemic to Aotearoa New Zealand were driven to extinction or reduced to relict populations following successive waves of human arrival, due to hunting, habitat destruction and the introduction of mammalian predators. Among the affected species were the large flightless South Island takahē (Porphyrio hochstetteri) and the moho (North Island takahē; P. mantelli), with the latter rendered extinct and the former reduced to a single relictual population. Little is known about the evolutionary history of these species prior to their decline and/or extinction. Here we sequenced mitochondrial genomes from takahē and moho subfossils (12 takahē and 4 moho) and retrieved comparable sequence data from takahē museum skins (n = 5) and contemporary individuals (n = 17) to examine the phylogeny and recent evolutionary history of these species. Our analyses suggest that prehistoric takahē populations lacked deep phylogeographic structure, in contrast to moho, which exhibited significant spatial genetic structure, albeit based on limited sample sizes (n = 4). Temporal genetic comparisons show that takahē have lost much of their mitochondrial genetic diversity, likely due to a sudden demographic decline soon after human arrival (~750 years ago). Time-calibrated phylogenetic analyses strongly support a sister species relationship between takahē and moho, suggesting these flightless taxa diverged around 1.5 million years ago, following a single colonisation of New Zealand by a flighted Porphyrio ancestor approximately 4 million years ago. This study highlights the utility of palaeogenetic approaches for informing the conservation and systematic understanding of endangered species whose ranges have been severely restricted by anthropogenic impacts.
Collapse
Affiliation(s)
- Alexander J F Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Eduard Mas-Carrió
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Gillian C Gibb
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Jonathan M Waters
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Lubbe P, Rawlence NJ, Kardailsky O, Robertson BC, Day R, Knapp M, Dussex N. Mitogenomes resolve the phylogeography and divergence times within the endemic New Zealand Callaeidae (Aves: Passerida). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The biogeographical origins of the endemic birds of New Zealand (Aotearoa) are of great interest, particularly Palaeogene lineages such as Callaeidae, a passerine family characterized by brightly coloured wattles behind the beak and, in some cases, extreme sexual dimorphism in bill size and shape. Ancestral representatives of Callaeidae are thought to have split from their closest relatives outside New Zealand in the Oligocene, but little is known about the timing of divergences within the family. We present a fully dated molecular phylogeny of Callaeidae mitogenomes and discuss the biogeographical implications. Our results suggest that formation of Pliocene marine seaways, such as the Manawatu Strait, are likely to have played a significant role in the differentiation of North Island and South Island kōkako (Callaeas spp.) and saddlebacks/tīeke (Philesturnus spp.).
Collapse
Affiliation(s)
- Pascale Lubbe
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago , Dunedin , New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | - Bruce C Robertson
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago , Dunedin , New Zealand
| | - Robert Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago , Dunedin , New Zealand
- Coastal People, Southern Skies Centre of Research Excellence, University of Otago , Dunedin , New Zealand
| | - Nicolas Dussex
- Swedish Museum of Natural History, Centre for Palaeogenetics (CPG) , Svante Arrhenius väg, Stockholm , Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History , Stockholm , Sweden
- Department of Zoology, Stockholm University , Stockholm , Sweden
| |
Collapse
|
4
|
Verry AJF, Lubbe P, Mitchell KJ, Rawlence NJ. Thirty years of ancient DNA and the faunal biogeography of Aotearoa New Zealand: lessons and future directions. J R Soc N Z 2022; 54:75-97. [PMID: 39439471 PMCID: PMC11459812 DOI: 10.1080/03036758.2022.2093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Thirty years ago, DNA sequences were obtained from an extinct Aotearoa New Zealand animal for the first time. Since then, ancient DNA research has provided many - often unexpected - insights into the origins of New Zealand's terrestrial and marine vertebrate fauna. Because recent human activities in New Zealand have caused the decline or extinction of many endemic plant, bird, reptile, and marine mammal species, ancient DNA has been instrumental in reconstructing their identities and origins. However, most ancient DNA studies focusing on New Zealand species have been restricted to vertebrates, with small sample sizes, and/or relatively few genetic markers. This has limited their power to infer fine-scale biogeographic patterns, including (pre)historic distributions and range-shifts driven by past climate and environmental change. Recently, 'next-generation' methodological and technological advances have broadened the range of hypotheses that can feasibly be tested with ancient DNA. These advances represent an exciting opportunity for further exploring New Zealand biogeography using ancient DNA, but their promise has not yet been fully realised. In this review, we summarise the last 30 years of ancient DNA research into New Zealand faunal biogeography and highlight key objectives, challenges, and possibilities for the next 30 years and beyond.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, Faculté de Médecine Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Pascale Lubbe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Mitchell KJ, Hugall AF, Heiniger H, Joseph L, Oliver PM. Disparate origins for endemic bird taxa from the ‘Gondwana Rainforests’ of Central Eastern Australia. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Subtropical and temperate rainforests of Central Eastern Australia are some of the largest remaining fragments of their kind globally. The biota of these rainforests appears to comprise two broad biogeographical elements: a more ancient (Miocene or older) and typically upland temperate (‘Gondwanan’) element and a younger (Plio-Pleistocene) lowland tropical element. We present the first phylogenetic synthesis of the spatiotemporal origins for the eight bird taxa endemic to Central Eastern Australian Rainforests. At least five of these eight focal taxa show Plio-Pleistocene divergences from their respective northern sister taxa, consistent with origins driven by recent expansion and contraction of lowland rainforest. In contrast, two more strictly upland species, the rufous scrub-bird (Atrichornis rufescens) and the logrunner (Orthonyx temminckii), diverged from their nearest living relatives during the Miocene, suggesting potentially longer histories of persistence and more temperate origins. Finally, we did not recover reciprocal monophyly in mitogenomes from the two extant lyrebirds, Albert’s lyrebird (Menura alberti) and the superb lyrebird (Menura novaehollandiae). The disparate divergence ages recovered among all eight taxa are consistent with the biota of the Central Eastern Australian Rainforests comprising isolates either of younger age and tropical lowland origins or of older age and temperate upland origins.
Collapse
Affiliation(s)
- Kieren J Mitchell
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| | - Andrew F Hugall
- Department of Sciences, Museums Victoria, Melbourne, VIC, Australia
| | - Holly Heiniger
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, ACT, Australia
| | - Paul M Oliver
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD, Australia
| |
Collapse
|
6
|
Oswald JA, Terrill RS, Stucky BJ, LeFebvre MJ, Steadman DW, Guralnick RP, Allen JM. Ancient DNA from the extinct Haitian cave-rail ( Nesotrochis steganinos) suggests a biogeographic connection between the Caribbean and Old World. Biol Lett 2021; 17:20200760. [PMID: 33726563 DOI: 10.1098/rsbl.2020.0760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Worldwide decline in biodiversity during the Holocene has impeded a comprehensive understanding of pre-human biodiversity and biogeography. This is especially true on islands, because many recently extinct island taxa were morphologically unique, complicating assessment of their evolutionary relationships using morphology alone. The Caribbean remains an avian hotspot but was more diverse before human arrival in the Holocene. Among the recently extinct lineages is the enigmatic genus Nesotrochis, comprising three flightless species. Based on morphology, Nesotrochis has been considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae). We recovered a nearly complete mitochondrial genome of Nesotrochis steganinos from fossils, discovering that it is not a rallid but instead is sister to Sarothruridae, volant birds now restricted to Africa and New Guinea, and the recently extinct, flightless Aptornithidae of New Zealand. This result suggests a widespread or highly dispersive most recent common ancestor of the group. Prior to human settlement, the Caribbean avifauna had a far more cosmopolitan origin than is evident from extant species.
Collapse
Affiliation(s)
- Jessica A Oswald
- Biology Department, University of Nevada, Reno, NV 89557, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ryan S Terrill
- Moore Lab of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Brian J Stucky
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Michelle J LeFebvre
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David W Steadman
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Julie M Allen
- Biology Department, University of Nevada, Reno, NV 89557, USA.,Illinois Natural History Survey, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Valente L, Etienne RS, Garcia-R JC. Deep Macroevolutionary Impact of Humans on New Zealand's Unique Avifauna. Curr Biol 2020; 29:2563-2569.e4. [PMID: 31386837 DOI: 10.1016/j.cub.2019.06.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 11/27/2022]
Abstract
Islands are at the frontline of the anthropogenic extinction crisis [1]. A vast number of island birds have gone extinct since human colonization [2], and an important proportion is currently threatened with extinction [3]. While the number of lost or threatened avian species has often been quantified [4], the macroevolutionary consequences of human impact on island biodiversity have rarely been measured [5]. Here, we estimate the amount of evolutionary time that has been lost or is under threat due to anthropogenic activity in a classic example, New Zealand. Half of its bird taxa have gone extinct since humans arrived [6, 7] and many are threatened [8], including lineages forming highly distinct branches in the avian tree of life [9-11]. Using paleontological and ancient DNA information, we compiled a dated phylogenetic dataset for New Zealand's terrestrial avifauna. We extend the method DAISIE developed for island biogeography [12] to allow for the fact that many of New Zealand's birds are evolutionarily isolated and use it to estimate natural rates of speciation, extinction, and colonization. Simulating under a range of human-induced extinction scenarios, we find that it would take approximately 50 million years (Ma) to recover the number of species lost since human colonization of New Zealand and up to 10 Ma to return to today's species numbers if currently threatened species go extinct. This study puts into macroevolutionary perspective the impact of humans in an isolated fauna and reveals how conservation decisions we take today will have repercussions for millions of years.
Collapse
Affiliation(s)
- Luis Valente
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Naturalis Biodiversity Center, Understanding Evolution Group, Darwinweg 2, 2333 CR Leiden, the Netherlands; University of Groningen, Groningen Institute for Evolutionary Life Sciences, P.O. Box 11103, 9700 CC Groningen, the Netherlands.
| | - Rampal S Etienne
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, P.O. Box 11103, 9700 CC Groningen, the Netherlands
| | - Juan C Garcia-R
- Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Phylogenomic Reconstruction Sheds Light on New Relationships and Timescale of Rails (Aves: Rallidae) Evolution. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The integration of state-of-the-art molecular techniques and analyses, together with a broad taxonomic sampling, can provide new insights into bird interrelationships and divergence. Despite their evolutionary significance, the relationships among several rail lineages remain unresolved as does the general timescale of rail evolution. Here, we disentangle the deep phylogenetic structure of rails using anchored phylogenomics. We analysed a set of 393 loci from 63 species, representing approximately 40% of the extant familial diversity. Our phylogenomic analyses reconstruct the phylogeny of rails and robustly infer several previously contentious relationships. Concatenated maximum likelihood and coalescent species-tree approaches recover identical topologies with strong node support. The results are concordant with previous phylogenetic studies using small DNA datasets, but they also supply an additional resolution. Our dating analysis provides contrasting divergence times using fossils and Bayesian and non-Bayesian approaches. Our study refines the evolutionary history of rails, offering a foundation for future evolutionary studies of birds.
Collapse
|
9
|
Abstract
Abstract
Avifaunas derived from Lapita archaeological sites excavated between 2004 and 2014 from four sites in the Vava'u Group and two on Tongatapu, Kingdom of Tonga are described, revealing birds encountered by the first human arrivals. A total of 741 identifiable bones revealed 24 avian taxa, among which terrestrial birds, especially rails, pigeons and parrots, were the most abundant. At a minimum, eight taxa, or 50% of the original non-passerine land bird diversity in the sample, are globally extinct. These include two megapodes (Megapodius alimentum and a larger unnamed megapode), three pigeons (a large Caloenas sp. indet., Didunculus placopedetes and Ducula shutleri sp. nov.), two rails (Hypotaenidia vavauensis sp. nov. and an unnamed one) and the parrot Eclectus infectus. The rail H. vavauensis was restricted to Vava'u and was flightless, with reduced wings, and larger than Hypotaenidia woodfordi of the Solomons, the largest congener hitherto found in the Pacific. The pigeon Du. shutleri was volant, but was the largest species in its genus and was widespread in the Kingdom. The evolution of Tongan avifaunas is related to varying ages (Pliocene to Pleistocene) of the island groups, where geological youth apparently precluded true giantism in the fauna.
Collapse
Affiliation(s)
- Trevor H Worthy
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - David V Burley
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Worthy TH, Hand SJ, Archer M, Scofield RP, De Pietri VL. Evidence for a giant parrot from the Early Miocene of New Zealand. Biol Lett 2019; 15:20190467. [PMID: 31387471 DOI: 10.1098/rsbl.2019.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insular avifaunas have repeatedly spawned evolutionary novelties in the form of unusually large, often flightless species. We report fossils from the Early Miocene St Bathans Fauna of New Zealand that attests to the former existence of a giant psittaciform, which is described as a new genus and species. The fossils are two incomplete tibiotarsi from a bird with an estimated mass of 7 kg, double that of the heaviest known parrot, the kakapo Strigops habroptila. These psittaciform fossils show that parrots join the growing group of avian taxa prone to giantism in insular species, currently restricted to palaeognaths, anatids, sylviornithids, columbids, aptornithids, ciconiids, tytonids, falconids and accipitrids.
Collapse
Affiliation(s)
- Trevor H Worthy
- College of Science and Engineering, Flinders University, GPO 2100, Adelaide 5001, South Australia, Australia
| | - Suzanne J Hand
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael Archer
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - R Paul Scofield
- Canterbury Museum, Rolleston Avenue, Christchurch, New Zealand
| | | |
Collapse
|
11
|
New Material of Paleocene-Eocene Pellornis (Aves: Gruiformes) Clarifies the Pattern and Timing of the Extant Gruiform Radiation. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11070102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pellornis mikkelseni is an early gruiform from the latest Paleocene-earliest Eocene Fur Formation of Denmark. At approximately 54 million years old, it is among the earliest clear records of the Gruiformes. The holotype specimen, and only material thus far recognised, was originally considered to comprise a partial postcranial skeleton. However, additional mechanical preparation of the nodule containing the holotype revealed that the skeleton is nearly complete and includes a well-preserved skull. In addition to extracting new information from the holotype, we identify and describe two additional specimens of P. mikkelseni which reveal further morphological details of the skeleton. Together, these specimens show that P. mikkelseni possessed a schizorhinal skull and shared many features with the well-known Paleogene Messelornithidae (“Messel rails”). To reassess the phylogenetic position of P. mikkelseni, we modified an existing morphological dataset by adding 20 characters, four extant gruiform taxa, six extinct gruiform taxa, and novel scorings based on the holotype and referred specimens. Phylogenetic analyses recover a clade containing P. mikkelseni, Messelornis, Songzia and crown Ralloidea, supporting P. mikkelseni as a crown gruiform. The phylogenetic position of P. mikkelseni illustrates that some recent divergence time analyses have underestimated the age of crown Gruiformes. Our results suggest a Paleocene origin for this important clade, bolstering evidence for a rapid early radiation of Neoaves following the end-Cretaceous mass extinction.
Collapse
|
12
|
Musser GM, Cracraft J. A New Morphological Dataset Reveals a Novel Relationship for the Adzebills of New Zealand (Aptornis) and Provides a Foundation for Total Evidence Neoavian Phylogenetics. AMERICAN MUSEUM NOVITATES 2019. [DOI: 10.1206/3927.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Grace M. Musser
- The University of Texas at Austin, the Jackson School of Geosciences
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History
| |
Collapse
|