1
|
Hlohlongoane MN, Marume U, Chikwanha OC, Mapiye C. An exploratory study on the quality of the Longissimus thoracis et lumborum muscle of impala (Aepyceros melampus), mountain reedbuck (Redunca fulvorufula) and springbok (Antidorcas marsupialis) in South Africa. Meat Sci 2024; 218:109630. [PMID: 39173458 DOI: 10.1016/j.meatsci.2024.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Physicochemical quality, fatty acids, volatile compounds and shelf-life profiles of the longissimus thoracis et lumborum muscle of three game species: impala, mountain reedbuck and springbok harvested from a private game estate were measured. Average live weight at slaughter that ranged from 28 to 36 kg was included in the study. The carcass weights were recorded 24 h after slaughter. The longissimus thoracis et lumborum (LTL) muscle was sampled for meat analyses. Impala and springbok LTL had higher (P ≤ 0.05) pH24 and cooking loss values than the mountain reedbuck. In addition, the springbok had more tender (P ≤ 0.05) meat than the impala and mountain reedbuck. The mountain reedbuck and springbok had higher (P ≤ 0.05) proportions of oleic acid, total monounsaturated fatty acids (FA), linoleic acid, omega (n)-6 polyunsaturated FA, and alpha-linolenic acid compared to impala. During retail display, redness and chroma decreased over time, while yellowness and hue showed an upward trend for all species (P ≤ 0.05). It was observed that species affected meat quality, total proportions of fatty acids and volatile compounds.
Collapse
Affiliation(s)
- M N Hlohlongoane
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa; Food Security and Safety Niche Area, School of Agriculture Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa
| | - U Marume
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa; Food Security and Safety Niche Area, School of Agriculture Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa.
| | - O C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - C Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, South Africa
| |
Collapse
|
2
|
Slayi M, Zhou L, Jaja IF. Strategies, challenges, and outcomes of heat stress resilience in sub-Saharan African community-based cattle feedlots: a systematic review. Front Vet Sci 2024; 11:1455917. [PMID: 39380776 PMCID: PMC11458555 DOI: 10.3389/fvets.2024.1455917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
In sub-Saharan Africa, cattle feedlots face a significant challenge in dealing with heat stress. However, there is a lack of inclusive strategies for resilience in these situations. The aim of this systematic review is to investigate the strategies, challenges, and outcomes related to heat stress resilience in community-based cattle feedlots in sub-Saharan Africa. The PRISMA approach, which is a method for reporting systematic reviews and meta-analyses, was used to identify, screen, and analyze 30 peer-reviewed articles published over the last 20 years from Google Scholar and Scopus. The review found that key strategies to mitigate heat stress include providing shade through natural and artificial means, ensuring constant access to cool, clean water using water spraying systems and cooling ponds, and implementing nutritional adjustments such as high-energy feeds and electrolyte supplements. Additionally, genetic selection for heat-tolerant breeds and management practices like adjusting feeding times and improving ventilation were found to be effective in dealing with heat stress. In particular, local germplasm and genetic traits of cattle in sub-Saharan Africa play a crucial role in heat stress resilience. Indigenous breeds, which have adapted to the region's harsh climate over centuries, exhibit traits such as higher heat tolerance, better water-use efficiency, and improved feed conversion rates under heat stress conditions. This genetic resilience can be enhanced through targeted breeding programs aimed at amplifying these beneficial traits. Implementing these strategies resulted in improved cattle health and productivity, as evidenced by enhanced weight gain, better reproductive performance, and lower mortality rates. The socio-economic benefits of these strategies included reduced economic losses and increased farmer incomes, which in turn contributed to improved community health and nutrition. However, the review also identified significant challenges, including financial constraints, limited access to knowledge and training, and cultural resistance. To address these barriers, the review recommends increased investment in affordable cooling technologies, farmer education, and community-based initiatives. Additionally, leveraging the genetic strengths of local cattle breeds should be prioritized to maximize the effectiveness of heat stress resilience strategies.
Collapse
Affiliation(s)
- Mhlangabezi Slayi
- Faculty of Science and Agriculture, Centre for Global Change, University of Fort Hare, Alice, South Africa
| | - Leocadia Zhou
- Faculty of Science and Agriculture, Centre for Global Change, University of Fort Hare, Alice, South Africa
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice, South Africa
| |
Collapse
|
3
|
Olaniyan OF, Kaya İ, Secka A. Assessment of composition and physical properties of the Gambian N’Dama cow milk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
5
|
Soladoye PO, Juárez M, Estévez M, Fu Y, Álvarez C. Exploring the prospects of the fifth quarter in the 21st century. Compr Rev Food Sci Food Saf 2022; 21:1439-1461. [PMID: 35029308 DOI: 10.1111/1541-4337.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
A variable proportion of slaughtered livestock, generally referred to as the fifth quarter, is not part of the edible dressed meat and regarded as animal byproduct. In order for the fifth quarter to play a significant role in the current effort toward a circular bio-based economy, it has to successfully support food security, social inclusivity, environmental sustainability, and a viable economy. The high volume of these low-value streams and their nutrient-dense nature can facilitate their position as a very important candidate to explore within the context of a circular bio-based economy to achieve some of the United Nations Sustainable Development Goals (UN-SDGs). While these sources have been traditionally used for various applications across different cultures and industries, it seems evident that their full potential has not yet been exploited, leaving these products more like an environmental burden rather than valuable resources. With innovation and well-targeted interdisciplinary collaborations, the potential of the fifth quarter can be fully realized. The present review intends to explore these low-value streams, their current utilization, and their potential to tackle the global challenges of increasing protein demands while preventing environmental degradation. Factors that limit widespread applications of the fifth quarter across industries and cultures will also be discussed.
Collapse
Affiliation(s)
- Philip O Soladoye
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
6
|
A Review of Ethnoveterinary Knowledge, Biological Activities and Secondary Metabolites of Medicinal Woody Plants Used for Managing Animal Health in South Africa. Vet Sci 2021; 8:vetsci8100228. [PMID: 34679058 PMCID: PMC8537377 DOI: 10.3390/vetsci8100228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Globally, the use of ethnoveterinary medicine as remedies for animal health among different ethnic groups justify the need for a systematic exploration to enhance their potential. In addition, the increasing popularity and utilisation of woody plants remain common in traditional medicine, which may be attributed to their inherent benefits. The current review was aimed at analysing ethnoveterinary surveys, biological activities, and secondary metabolites/phytochemical profiles of the woody plants of South Africa. Eligible literature (period: 2000 to 2020) were retrieved from different databases such as Google Scholar, PubMed, Sabinet, and Science Direct. Based on the inclusion and exclusion criteria, 20 ethnoveterinary surveys were eligible and were subjected to further analysis. We identified 104 woody plant species from 44 plant families that are used in the treatment of different diseases in animals, particularly cattle (70%) and goats (20%). The most mentioned (with six citations) woody plants were Terminalia sericea Burch. ex DC and Ziziphus mucronata Willd., which were followed by plants with five (Cussonia spicata Thunb., Pterocarpus angolensis DC and Vachellia karroo (Hayne) Banfi & Galasso) or four (Acokanthera oppositifolia (Lam.) Codd, Cassia abbreviata Oliv., and Strychnos henningsii Gilg) individual mentions. The most dominant families were Fabaceae (19%), Apocynaceae (5.8%), Rubiaceae (5.8%), Anacardiaceae (4.8%), Combretaceae (4.8%), Euphorbiaceae (4.8%), Malvaceae (4.8%), Rhamnaceae (4.8%), and Celastraceae (3.8%). Bark (33%), leaves (29%), and roots (19%) were the plant parts dominantly used to prepare remedies for ethnoveterinary medicine. An estimated 20% of woody plants have been screened for antimicrobial, anthelmintic, antioxidant, and cytotoxicity effects. Phytochemical profiles established a rich pool of valuable secondary metabolites (phenolic, flavonoids and condensed tannins) that may be responsible for the exerted biological activities. Overall, the significant portion of woody plants lacking empirical evidence on their biological effects indicates a major knowledge gap that requires more research efforts.
Collapse
|
7
|
Van Eenennaam AL, Werth SJ. Animal board invited review: Animal agriculture and alternative meats - learning from past science communication failures. Animal 2021; 15:100360. [PMID: 34563799 DOI: 10.1016/j.animal.2021.100360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/24/2023] Open
Abstract
Sustainability discussions bring in multiple competing goals, and the outcomes are often conflicting depending upon which goal is being given credence. The role of livestock in supporting human well-being is especially contentious in discourses around sustainable diets. There is considerable variation in which environmental metrics are measured when describing sustainable diets, although some estimate of the greenhouse gas (GHG) emissions of different diets based on varying assumptions is commonplace. A market for animal-free and manufactured food items to substitute for animal source food (ASF) has emerged, driven by the high GHG emissions of ASF. Ingredients sourced from plants, and animal cells grown in culture are two approaches employed to produce alternative meats. These can be complemented with ingredients produced using synthetic biology. Alternative meat companies promise to reduce GHG, the land and water used for food production, and reduce or eliminate animal agriculture. Some CEOs have even claimed alternative meats will 'end world hunger'. Rarely do such self-proclamations emanate from scientists, but rather from companies in their efforts to attract venture capital investment and market share. Such declarations are reminiscent of the early days of the biotechnology industry. At that time, special interest groups employed fear-based tactics to effectively turn public opinion against the use of genetic engineering to introduce sustainability traits, like disease resistance and nutrient fortification, into global genetic improvement programs. These same groups have recently turned their sights on the 'unnaturalness' and use of synthetic biology in the production of meat alternatives, leaving agriculturists in a quandary. Much of the rationale behind alternative meats invokes a simplistic narrative, with a primary focus on GHG emissions, ignoring the nutritional attributes and dietary importance of ASF, and livelihoods that are supported by grazing ruminant production systems. Diets with low GHG emissions are often described as sustainable, even though the nutritional, social and economic pillars of sustainability are not considered. Nutritionists, geneticists, and veterinarians have been extremely successful at developing new technologies to reduce the environmental footprint of ASF. Further technological developments are going to be requisite to continuously improve the efficiency of animal source, plant source, and cultured meat production. Perhaps there is an opportunity to collectively communicate how innovations are enabling both alternative- and conventional-meat producers to more sustainably meet future demand. This could counteract the possibility that special interest groups who promulgate misinformation, fear and uncertainty, will hinder the adoption of technological innovations to the ultimate detriment of global food security.
Collapse
Affiliation(s)
- A L Van Eenennaam
- Department of Animal Science, University of California, 1 Shields Ave, Davis, CA 95616, USA.
| | - S J Werth
- Department of Animal Science, University of California, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
8
|
Raphela TD, Pillay N. Explaining the Effect of Crop-Raiding on Food Security of Subsistence Farmers of KwaZulu Natal, South Africa. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.687177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the globe, crop-raiding has been known to have a significant impact on subsistence farmers livelihoods in developing countries. However, the relationship between crop-raiding and food security of small-scale farmers is not well-studied. We investigated the effects of crop-raiding on homestead food security of a subsistence farming community on the edge of the Hluhluwe Game Reserve in northern KwaZulu-Natal Province, South Africa. We analyzed the relative calories lost to important food security crops (maize, common bean, spinach, and beetroot) damage by crop raiders. In addition, we conducted questionnaire surveys of resident farmers and conservationists of the Hluhluwe Game Reserve to explain the effect of crop-raiding on food security. We firstly assessed how crop loss influenced relative calorie loss as an indicator of food security by comparing relative calorie loss with two predictors of food security: homestead size and contribution of crops to the farmers' food basket. Larger homesteads were more prone to food insecurity as compared to smaller households as they experienced higher calorie loss, especially in terms of maize (Zea mays), the most important food security crop in South Africa. This was because maize contributed the highest (91–100%) to the homestead food basket of these farmers. Secondly, we assessed farmers and conservationists' perceptions and opinions on crop-raiding issues. Farmers reported maize as the crop most damaged by crop-raiding animals. Conservationists reported crop-raiding with other major problems in and around the Reserve; this showed that conservationists acknowledge the issue of crop-raiding as a problem for subsistence farming communities abutting protected areas. Both farmers and conservationists reported insects as the most damaging crop raider. Our study suggests that larger homesteads, particularly where maize contributes substantially to homestead food baskets, are more prone to food insecurity in the rural subsistence farming community that we studied. In concordance with many studies, insects were reported as the culprits by both farmers and conservationists. Small, ubiquitous animals, such as insects are reported to cause much crop damage where they occur. The findings of our study suggest that the food security of the studied farmers is threatened by crop-raiding.
Collapse
|
9
|
Genetic Variation and Population Differentiation in the Bovine Lymphocyte Antigen DRB3.2 Locus of South African Nguni Crossbred Cattle. Animals (Basel) 2021; 11:ani11061651. [PMID: 34199370 PMCID: PMC8228392 DOI: 10.3390/ani11061651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Indigenous cattle breeds are important to their native environment as they confer significant and often unique adaptability traits. The Nguni is one such breeds that is indigenous to the Southern African region. This breed confers resistance to thermal stress and diseases, amongst other factors. The bovine major histocompatibility complex is an important region, which codes for alleles that have been associated with a plethora of diseases. In the current study, the genetic diversity within this region was assessed in Nguni crossbred cattle. This was done to detect the gene pool of the Nguni breed, and to identify genes that might be important within this breed. The populations displayed a high degree of genetic diversity, and some alleles were common throughout the populations and accounted for a significant portion of the total alleles. This high genetic diversity could account for the great adaptability of the Nguni breed to Southern Africa. Abstract The bovine lymphocyte antigen (BoLA-DRB3) gene is an important region that codes for glycoproteins responsible for the initiation of an immune response. BoLA-DRB3 alleles have been demonstrated to be associated with disease resistance/tolerance. Therefore, great genetic diversity is correlated with better adaptation, fitness, and robustness. The current study was conducted to assess the population genetic structure of the BoLA-DRB3 gene in Nguni crossbred cattle using polymerase chain reaction-sequence based typing (PCR-SBT). High genetic diversity was detected, with 30 alleles, 11 of which are novel to the study. Alleles DRB3*0201, DRB3*0701, DRB*0901, and DRB*1601 were present in all populations and accounted for nearly around 50% of all observed alleles. A mean genetic diversity (HE) of 0.93 was detected. The high overall genetic diversity is possibly associated with pathogen-assisted selection and heterozygote advantage. Such high diversity might explain the hardiness of the Nguni crossbred cattle to the Southern African region. Low population genetic structure was identified (FST = 0.01), suggesting possible gene flow between populations and retention of similar alleles. The study was undertaken to bridge the dearth of such studies in South African breeds and it is imperative for effective sustainability of indigenous breeds and the implementation of effective breeding strategies.
Collapse
|
10
|
Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116260] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food systems (AFS) have been central in the debate on sustainable development. Despite this growing interest in AFS, comprehensive analyses of the scholarly literature are hard to find. Therefore, the present systematic review delineated the contours of this growing research strand and analyzed how it relates to sustainability. A search performed on the Web of Science in January 2020 yielded 1389 documents, and 1289 were selected and underwent bibliometric and topical analyses. The topical analysis was informed by the SAFA (Sustainability Assessment of Food and Agriculture systems) approach of FAO and structured along four dimensions viz. environment, economy, society and culture, and policy and governance. The review shows an increasing interest in AFS with an exponential increase in publications number. However, the study field is north-biased and dominated by researchers and organizations from developed countries. Moreover, the analysis suggests that while environmental aspects are sufficiently addressed, social, economic, and political ones are generally overlooked. The paper ends by providing directions for future research and listing some topics to be integrated into a comprehensive, multidisciplinary agenda addressing the multifaceted (un)sustainability of AFS. It makes the case for adopting a holistic, 4-P (planet, people, profit, policy) approach in agri-food system studies.
Collapse
|
11
|
|