1
|
Patangia DV, Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics (Basel) 2023; 12:1315. [PMID: 37627735 PMCID: PMC10451192 DOI: 10.3390/antibiotics12081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the longitudinal impact of methods for the drying off of cows with and without dry cow therapy (DCT) on the microbiota and resistome profile in colostrum and milk samples from cows. Three groups of healthy dairy cows (n = 24) with different antibiotic treatments during DCT were studied. Colostrum and milk samples from Month 0 (M0), 2 (M2), 4 (M4) and 6 (M6) were analysed using whole-genome shotgun-sequencing. The microbial diversity from antibiotic-treated groups was different and higher than that of the non-antibiotic group. This difference was more evident in milk compared to colostrum, with increasing diversity seen only in antibiotic-treated groups. The microbiome of antibiotic-treated groups clustered separately from the non-antibiotic group at M2-, M4- and M6 milk samples, showing the effect of antibiotic treatment on between-group (beta) diversity. The non-antibiotic group did not show a high relative abundance of mastitis-causing pathogens during early lactation and was more associated with genera such as Psychrobacter, Serratia, Gordonibacter and Brevibacterium. A high relative abundance of antibiotic resistance genes (ARGs) was observed in the milk of antibiotic-treated groups with the Cephaguard group showing a significantly high abundance of genes conferring resistance to cephalosporin, aminoglycoside and penam classes. The data support the use of non-antibiotic alternatives for drying off in cows.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Ghjuvan Grimaud
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Kevin Linehan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
2
|
Thakur K, Goud ESK, Jawa Y, Keswani C, Onteru S, Singh D, Singh SP, Roy P, Tyagi RK. Detection of endocrine and metabolism disrupting xenobiotics in milk-derived fat samples by fluorescent protein-tagged nuclear receptors and live cell imaging. Toxicol Mech Methods 2022; 33:293-306. [PMID: 36154553 DOI: 10.1080/15376516.2022.2128704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.
Collapse
Affiliation(s)
- Keshav Thakur
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Yashika Jawa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Suneel Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
3
|
Navrátilova P, Borkovcova I, Stastkova Z, Bednarova I, Vorlova L. Effect of Cephalosporin Antibiotics on the Activity of Yoghurt Cultures. Foods 2022; 11:foods11182751. [PMID: 36140878 PMCID: PMC9497970 DOI: 10.3390/foods11182751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The presence of antibiotics in milk is a significant problem affecting the technological safety of dairy products. The aim of the study was to determine the sensitivity of yoghurt cultures to residual levels of selected cephalosporin antibiotics (cephalexin, cefoperazone, cefquinome, cefazolin, and ceftiofur). Five yoghurt cultures were selected containing strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Artificially fortified milk samples (whole pasteurized milk; 85 °C; 3−5 s) with cephalosporins at a concentration of the maximum residue limit were used to evaluate the sensitivity of the yoghurt cultures by monitoring the pH, titratable acidity, and the concentration of selected organic acids (lactic, pyruvic, citric, acetic, orotic, oxalic, formic, uric, and succinic acids) at the end of fermentation (43 °C; 4−5.5 h; pH ≤ 4.6). The titratable acidity was determined by the Soxhlet−Henkel method and the organic acid concentration was monitored by reversed-phase HPLC. Ceftiofur had the greatest effect on the yoghurt culture activity, with a statistically highly significant effect (p < 0.05) on the pH, titratable acidity, and the content of lactic, pyruvic, and acetic acids in all cultures. Other cephalosporins also showed an inhibitory effect on yoghurt metabolism as seen by the evaluation of the lactic and pyruvic acid concentrations.
Collapse
|