1
|
She Q, Sun S, Ma Y, Li R, Zhang Y. LUCF-Net: Lightweight U-Shaped Cascade Fusion Network for Medical Image Segmentation. IEEE J Biomed Health Inform 2025; 29:2088-2099. [PMID: 40030349 DOI: 10.1109/jbhi.2024.3506829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
The performance of modern U-shaped neural networks for medical image segmentation has been significantly enhanced by incorporating Transformer layers. Although Transformer architectures are powerful at extracting global information, its ability to capture local information is limited due to their high complexity. To address this challenge, we proposed a new lightweight U-shaped cascade fusion network (LUCF-Net) for medical image segmentation. It utilized an asymmetrical structural design and incorporated both local and global modules to enhance its capacity for local and global modeling. Additionally, a multi-layer cascade fusion decoding network was designed to further bolster the network's information fusion capabilities. Validation performed on open-source CT, MRI, and dermatology datasets demonstrated that the proposed model outperformed other state-of-the-art methods in handling local-global information, achieving an improvement of 1.46% in Dice coefficient and 2.98 mm in Hausdorff distance on multi-organ segmentation. Furthermore, as a network that combines Convolutional Neural Network and Transformer architectures, it achieves competitive segmentation performance with only 6.93 million parameters and 6.6 gigabytes of floating point operations, without the need for pre-training. In summary, the proposed method demonstrated enhanced performance while retaining a simpler model design compared to other Transformer-based segmentation networks.
Collapse
|
2
|
Yao S, Huang Y, Wang X, Zhang Y, Paixao IC, Wang Z, Chai CL, Wang H, Lu D, Webb GI, Li S, Guo Y, Chen Q, Song J. A Radiograph Dataset for the Classification, Localization, and Segmentation of Primary Bone Tumors. Sci Data 2025; 12:88. [PMID: 39820508 PMCID: PMC11739492 DOI: 10.1038/s41597-024-04311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Primary malignant bone tumors are the third highest cause of cancer-related mortality among patients under the age of 20. X-ray scan is the primary tool for detecting bone tumors. However, due to the varying morphologies of bone tumors, it is challenging for radiologists to make a definitive diagnosis based on radiographs. With the recent advancement in deep learning algorithms, there is a surge of interest in computer-aided diagnosis of primary bone tumors. Nonetheless, the development in this field has been hindered by the lack of publicly available X-ray datasets for bone tumors. To tackle this challenge, we established the Bone Tumor X-ray Radiograph dataset (termed BTXRD) in collaboration with multiple medical institutes and hospitals. The BTXRD dataset comprises 3,746 bone images (1,879 normal and 1,867 tumor), with clinical information and global labels available for each image, and distinct mask and annotated bounding box for each tumor instance. This publicly available dataset can support the development and evaluation of deep learning algorithms for the diagnosis of primary bone tumors.
Collapse
Affiliation(s)
- Shunhan Yao
- Medical College, Guangxi University, Nanning, Guangxi, 530000, China
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Yuanxiang Huang
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, 530000, China
| | - Xiaoyu Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Yiwen Zhang
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Ian Costa Paixao
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Charla Lu Chai
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
| | - Dinggui Lu
- Department of Traumatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Geoffrey I Webb
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, 530000, China.
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Rizk PA, Gonzalez MR, Galoaa BM, Girgis AG, Van Der Linden L, Chang CY, Lozano-Calderon SA. Machine Learning-Assisted Decision Making in Orthopaedic Oncology. JBJS Rev 2024; 12:01874474-202407000-00005. [PMID: 38991098 DOI: 10.2106/jbjs.rvw.24.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
» Artificial intelligence is an umbrella term for computational calculations that are designed to mimic human intelligence and problem-solving capabilities, although in the future, this may become an incomplete definition. Machine learning (ML) encompasses the development of algorithms or predictive models that generate outputs without explicit instructions, assisting in clinical predictions based on large data sets. Deep learning is a subset of ML that utilizes layers of networks that use various inter-relational connections to define and generalize data.» ML algorithms can enhance radiomics techniques for improved image evaluation and diagnosis. While ML shows promise with the advent of radiomics, there are still obstacles to overcome.» Several calculators leveraging ML algorithms have been developed to predict survival in primary sarcomas and metastatic bone disease utilizing patient-specific data. While these models often report exceptionally accurate performance, it is crucial to evaluate their robustness using standardized guidelines.» While increased computing power suggests continuous improvement of ML algorithms, these advancements must be balanced against challenges such as diversifying data, addressing ethical concerns, and enhancing model interpretability.
Collapse
Affiliation(s)
- Paul A Rizk
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos R Gonzalez
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bishoy M Galoaa
- Interdisciplinary Science & Engineering Complex (ISEC), Northeastern University, Boston, Massachusetts
| | - Andrew G Girgis
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Lotte Van Der Linden
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connie Y Chang
- Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Santiago A Lozano-Calderon
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Usuff R, Kothandapani S, Rangan R, Dhatchnamurthy S. Enhancing radiographic image interpretation: WARES-PRS model for knee bone tumour detection. NETWORK (BRISTOL, ENGLAND) 2024:1-31. [PMID: 38932464 DOI: 10.1080/0954898x.2024.2357660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
The early diagnosis of tumour is significant in biomedical research field to lower the severity level and restrict the process extension from cancer. Moreover, the detection of early sign of cancer is undertaken with extensive research efforts that dedicated to the disclosure and recognition of tumours. However, the limited data size as well as diverse appearance of images lowered the detection performance and failed to detect complex stage of tumour. So to solve these issues, a Weighted Adaptive Random Ensemble Support Vector-based Partial Reinforcement Search (WARES-PRS) algorithm is proposed that detected bone lesions accurately and also predicted the severity level stage efficiently. Further, the detection is performed with varied stages to diminish the presence of noise and undertaken effective classification. The performance is validated with CNUH dataset that enhanced image pre-processing tasks. Despite the proposed method uncover the mutual relationships between each pixel's local texture and the overall image's global context. The detection and classification efficiency is validated with various measures and the experimental results revealed that the detection accuracy is enhanced for the proposed approach by 98.5%. The outcomes of our study have exhibited a substantial contribution to assisting physicians in the detection of knee bone tumours.
Collapse
Affiliation(s)
- Rahamathunnisa Usuff
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sudhakar Kothandapani
- Department of Computer Science & Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India
| | - Rajesh Rangan
- Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
| | - Saravanan Dhatchnamurthy
- Department of Computer Science and Engineering, School of Computing, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
5
|
Wang S, Sun M, Sun J, Wang Q, Wang G, Wang X, Meng X, Wang Z, Yu H. Advancing musculoskeletal tumor diagnosis: Automated segmentation and predictive classification using deep learning and radiomics. Comput Biol Med 2024; 175:108502. [PMID: 38678943 DOI: 10.1016/j.compbiomed.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVES Musculoskeletal (MSK) tumors, given their high mortality rate and heterogeneity, necessitate precise examination and diagnosis to guide clinical treatment effectively. Magnetic resonance imaging (MRI) is pivotal in detecting MSK tumors, as it offers exceptional image contrast between bone and soft tissue. This study aims to enhance the speed of detection and the diagnostic accuracy of MSK tumors through automated segmentation and grading utilizing MRI. MATERIALS AND METHODS The research included 170 patients (mean age, 58 years ±12 (standard deviation), 84 men) with MSK lesions, who underwent MRI scans from April 2021 to May 2023. We proposed a deep learning (DL) segmentation model MSAPN based on multi-scale attention and pixel-level reconstruction, and compared it with existing algorithms. Using MSAPN-segmented lesions to extract their radiomic features for the benign and malignant classification of tumors. RESULTS Compared to the most advanced segmentation algorithms, MSAPN demonstrates better performance. The Dice similarity coefficients (DSC) are 0.871 and 0.815 in the testing set and independent validation set, respectively. The radiomics model for classifying benign and malignant lesions achieves an accuracy of 0.890. Moreover, there is no statistically significant difference between the radiomics model based on manual segmentation and MSAPN segmentation. CONCLUSION This research contributes to the advancement of MSK tumor diagnosis through automated segmentation and predictive classification. The integration of DL algorithms and radiomics shows promising results, and the visualization analysis of feature maps enhances clinical interpretability.
Collapse
Affiliation(s)
- Shuo Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China.
| | - Man Sun
- Radiology Department, Tianjin University Tianjin Hospital, Tianjin, 300299, China.
| | - Jinglai Sun
- The School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Qingsong Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Guangpu Wang
- The School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xiaolin Wang
- The School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xianghong Meng
- Radiology Department, Tianjin University Tianjin Hospital, Tianjin, 300299, China.
| | - Zhi Wang
- Radiology Department, Tianjin University Tianjin Hospital, Tianjin, 300299, China.
| | - Hui Yu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China; The School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Salehi MA, Mohammadi S, Harandi H, Zakavi SS, Jahanshahi A, Shahrabi Farahani M, Wu JS. Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:766-777. [PMID: 38343243 PMCID: PMC11031503 DOI: 10.1007/s10278-023-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 04/20/2024]
Abstract
We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (AI) algorithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and AI. After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Quality assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The pooled sensitivities for AI algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84% (95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 84% (95% CI: 75.90) and 91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97), respectively. The sensitivity and specificity for clinicians with AI assistance were 95% (95% CI: 86.98) and 57% (95% CI: 48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this gap in scientific understanding and promote effective implementation for medical practice advancement.
Collapse
Affiliation(s)
- Mohammad Amin Salehi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran.
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Jim S Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
7
|
Gitto S, Annovazzi A, Nulle K, Interlenghi M, Salvatore C, Anelli V, Baldi J, Messina C, Albano D, Di Luca F, Armiraglio E, Parafioriti A, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones. EBioMedicine 2024; 101:105018. [PMID: 38377797 PMCID: PMC10884340 DOI: 10.1016/j.ebiom.2024.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones. METHODS This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test. FINDINGS Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617). INTERPRETATION X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones. FUNDING AIRC Investigator Grant.
Collapse
Affiliation(s)
- Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Alessio Annovazzi
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Kitija Nulle
- Radiology Department, Riga East Clinical University Hospital, Riga, Latvia
| | | | - Christian Salvatore
- DeepTrace Technologies s.r.l., Milan, Italy; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Filippo Di Luca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Roberto Biagini
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Castiglioni
- Department of Physics "G. Occhialini", Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Shao J, Lin H, Ding L, Li B, Xu D, Sun Y, Guan T, Dai H, Liu R, Deng D, Huang B, Feng S, Diao X, Gao Z. Deep learning for differentiation of osteolytic osteosarcoma and giant cell tumor around the knee joint on radiographs: a multicenter study. Insights Imaging 2024; 15:35. [PMID: 38321327 PMCID: PMC10847082 DOI: 10.1186/s13244-024-01610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVES To develop a deep learning (DL) model for differentiating between osteolytic osteosarcoma (OS) and giant cell tumor (GCT) on radiographs. METHODS Patients with osteolytic OS and GCT proven by postoperative pathology were retrospectively recruited from four centers (center A, training and internal testing; centers B, C, and D, external testing). Sixteen radiologists with different experiences in musculoskeletal imaging diagnosis were divided into three groups and participated with or without the DL model's assistance. DL model was generated using EfficientNet-B6 architecture, and the clinical model was trained using clinical variables. The performance of various models was compared using McNemar's test. RESULTS Three hundred thirty-three patients were included (mean age, 27 years ± 12 [SD]; 186 men). Compared to the clinical model, the DL model achieved a higher area under the curve (AUC) in both the internal (0.97 vs. 0.77, p = 0.008) and external test set (0.97 vs. 0.64, p < 0.001). In the total test set (including the internal and external test sets), the DL model achieved higher accuracy than the junior expert committee (93.1% vs. 72.4%; p < 0.001) and was comparable to the intermediate and senior expert committee (93.1% vs. 88.8%, p = 0.25; 87.1%, p = 0.35). With DL model assistance, the accuracy of the junior expert committee was improved from 72.4% to 91.4% (p = 0.051). CONCLUSION The DL model accurately distinguished osteolytic OS and GCT with better performance than the junior radiologists, whose own diagnostic performances were significantly improved with the aid of the model, indicating the potential for the differential diagnosis of the two bone tumors on radiographs. CRITICAL RELEVANCE STATEMENT The deep learning model can accurately distinguish osteolytic osteosarcoma and giant cell tumor on radiographs, which may help radiologists improve the diagnostic accuracy of two types of tumors. KEY POINTS • The DL model shows robust performance in distinguishing osteolytic osteosarcoma and giant cell tumor. • The diagnosis performance of the DL model is better than junior radiologists'. • The DL model shows potential for differentiating osteolytic osteosarcoma and giant cell tumor.
Collapse
Affiliation(s)
- Jingjing Shao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongxin Lin
- Medical AI Lab, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Lei Ding
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Li
- Medical AI Lab, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Danyang Xu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Sun
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tianming Guan
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Haiyang Dai
- Department of Radiology, People's Hospital of Huizhou City Center, Huizhou, Guangdong, China
| | - Ruihao Liu
- Medical AI Lab, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Demao Deng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guanxi Academy of Medical Science, Nanning, Guangxi, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xianfen Diao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Zhenhua Gao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China.
| |
Collapse
|
9
|
Anttila TT, Aspinen S, Pierides G, Haapamäki V, Laitinen MK, Ryhänen J. Enchondroma Detection from Hand Radiographs with an Interactive Deep Learning Segmentation Tool-A Feasibility Study. J Clin Med 2023; 12:7129. [PMID: 38002741 PMCID: PMC10672653 DOI: 10.3390/jcm12227129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Enchondromas are common benign bone tumors, usually presenting in the hand. They can cause symptoms such as swelling and pain but often go un-noticed. If the tumor expands, it can diminish the bone cortices and predispose the bone to fracture. Diagnosis is based on clinical investigation and radiographic imaging. Despite their typical appearance on radiographs, they can primarily be misdiagnosed or go totally unrecognized in the acute trauma setting. Earlier applications of deep learning models to image classification and pattern recognition suggest that this technique may also be utilized in detecting enchondroma in hand radiographs. We trained a deep learning model with 414 enchondroma radiographs to detect enchondroma from hand radiographs. A separate test set of 131 radiographs (47% with an enchondroma) was used to assess the performance of the trained deep learning model. Enchondroma annotation by three clinical experts served as our ground truth in assessing the deep learning model's performance. Our deep learning model detected 56 enchondromas from the 62 enchondroma radiographs. The area under receiver operator curve was 0.95. The F1 score for area statistical overlapping was 69.5%. Our deep learning model may be a useful tool for radiograph screening and raising suspicion of enchondroma.
Collapse
Affiliation(s)
- Turkka Tapio Anttila
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Samuli Aspinen
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Georgios Pierides
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Ville Haapamäki
- Department of Radiology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Minna Katariina Laitinen
- Musculoskeletal and Plastic Surgery, Department of Orthopedic Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jorma Ryhänen
- Musculoskeletal and Plastic Surgery, Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
10
|
Breden S, Hinterwimmer F, Consalvo S, Neumann J, Knebel C, von Eisenhart-Rothe R, Burgkart RH, Lenze U. Deep Learning-Based Detection of Bone Tumors around the Knee in X-rays of Children. J Clin Med 2023; 12:5960. [PMID: 37762901 PMCID: PMC10531620 DOI: 10.3390/jcm12185960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Even though tumors in children are rare, they cause the second most deaths under the age of 18 years. More often than in other age groups, underage patients suffer from malignancies of the bones, and these mostly occur in the area around the knee. One problem in the treatment is the early detection of bone tumors, especially on X-rays. The rarity and non-specific clinical symptoms further prolong the time to diagnosis. Nevertheless, an early diagnosis is crucial and can facilitate the treatment and therefore improve the prognosis of affected children. A new approach to evaluating X-ray images using artificial intelligence may facilitate the detection of suspicious lesions and, hence, accelerate the referral to a specialized center. We implemented a Vision Transformer model for image classification of healthy and pathological X-rays. To tackle the limited amount of data, we used a pretrained model and implemented extensive data augmentation. Discrete parameters were described by incidence and percentage ratio and continuous parameters by median, standard deviation and variance. For the evaluation of the model accuracy, sensitivity and specificity were computed. The two-entity classification of the healthy control group and the pathological group resulted in a cross-validated accuracy of 89.1%, a sensitivity of 82.2% and a specificity of 93.2% for test groups. Grad-CAMs were created to ensure the plausibility of the predictions. The proposed approach, using state-of-the-art deep learning methodology to detect bone tumors on knee X-rays of children has achieved very good results. With further improvement of the algorithm, enlargement of the dataset and removal of potential biases, this could become a useful additional tool, especially to support general practitioners for early, accurate and specific diagnosis of bone lesions in young patients.
Collapse
Affiliation(s)
- Sebastian Breden
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Florian Hinterwimmer
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute for AI and Informatics in Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Consalvo
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Neumann
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Carolin Knebel
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Rüdiger von Eisenhart-Rothe
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Rainer H. Burgkart
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ulrich Lenze
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
11
|
Yildiz Potter I, Yeritsyan D, Mahar S, Wu J, Nazarian A, Vaziri A, Vaziri A. Automated Bone Tumor Segmentation and Classification as Benign or Malignant Using Computed Tomographic Imaging. J Digit Imaging 2023; 36:869-878. [PMID: 36627518 PMCID: PMC10287871 DOI: 10.1007/s10278-022-00771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to pair computed tomography (CT) imaging and machine learning for automated bone tumor segmentation and classification to aid clinicians in determining the need for biopsy. In this retrospective study (March 2005-October 2020), a dataset of 84 femur CT scans (50 females and 34 males, 20 years and older) with definitive histologic confirmation of bone lesion (71% malignant) were leveraged to perform automated tumor segmentation and classification. Our method involves a deep learning architecture that receives a DICOM slice and predicts (i) a segmentation mask over the estimated tumor region, and (ii) a corresponding class as benign or malignant. Class prediction for each case is then determined via majority voting. Statistical analysis was conducted via fivefold cross validation, with results reported as averages along with 95% confidence intervals. Despite the imbalance between benign and malignant cases in our dataset, our approach attains similar classification performances in specificity (75%) and sensitivity (79%). Average segmentation performance attains 56% Dice score and reaches up to 80% for an image slice in each scan. The proposed approach establishes the first steps in developing an automated deep learning method on bone tumor segmentation and classification from CT imaging. Our approach attains comparable quantitative performance to existing deep learning models using other imaging modalities, including X-ray. Moreover, visual analysis of bone tumor segmentation indicates that our model is capable of learning typical tumor characteristics and provides a promising direction in aiding the clinical decision process for biopsy.
Collapse
Affiliation(s)
| | - Diana Yeritsyan
- Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Sarah Mahar
- Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jim Wu
- Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Ara Nazarian
- Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Aidin Vaziri
- BioSensics LLC, 57 Chapel Street, Newton, MA, 02458, USA
| | - Ashkan Vaziri
- BioSensics LLC, 57 Chapel Street, Newton, MA, 02458, USA
| |
Collapse
|
12
|
Ong W, Zhu L, Tan YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061837. [PMID: 36980722 PMCID: PMC10047175 DOI: 10.3390/cancers15061837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44–0.99, 0.63–1.00, and 0.73–0.96, respectively, with AUCs of 0.73–0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-67725207
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
13
|
Zhan X, Liu J, Long H, Zhu J, Tang H, Gou F, Wu J. An Intelligent Auxiliary Framework for Bone Malignant Tumor Lesion Segmentation in Medical Image Analysis. Diagnostics (Basel) 2023; 13:223. [PMID: 36673032 PMCID: PMC9858155 DOI: 10.3390/diagnostics13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive, with poor treatment outcomes and prognosis. Rapid and accurate diagnosis is crucial for limb salvage and increasing the survival rate. There is a lack of research on deep learning to segment bone malignant tumor lesions in medical images with complex backgrounds and blurred boundaries. Therefore, we propose a new intelligent auxiliary framework for the medical image segmentation of bone malignant tumor lesions, which consists of a supervised edge-attention guidance segmentation network (SEAGNET). We design a boundary key points selection module to supervise the learning of edge attention in the model to retain fine-grained edge feature information. We precisely locate malignant tumors by instance segmentation networks while extracting feature maps of tumor lesions in medical images. The rich contextual-dependent information in the feature map is captured by mixed attention to better understand the uncertainty and ambiguity of the boundary, and edge attention learning is used to guide the segmentation network to focus on the fuzzy boundary of the tumor region. We implement extensive experiments on real-world medical data to validate our model. It validates the superiority of our method over the latest segmentation methods, achieving the best performance in terms of the Dice similarity coefficient (0.967), precision (0.968), and accuracy (0.996). The results prove the important contribution of the framework in assisting doctors to improve the accuracy of diagnosis and clinical efficiency.
Collapse
Affiliation(s)
- Xiangbing Zhan
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Huiyun Long
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Haoyu Tang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
14
|
Fan X, Zhu Q, Tu P, Joskowicz L, Chen X. A review of advances in image-guided orthopedic surgery. Phys Med Biol 2023; 68. [PMID: 36595258 DOI: 10.1088/1361-6560/acaae9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Orthopedic surgery remains technically demanding due to the complex anatomical structures and cumbersome surgical procedures. The introduction of image-guided orthopedic surgery (IGOS) has significantly decreased the surgical risk and improved the operation results. This review focuses on the application of recent advances in artificial intelligence (AI), deep learning (DL), augmented reality (AR) and robotics in image-guided spine surgery, joint arthroplasty, fracture reduction and bone tumor resection. For the pre-operative stage, key technologies of AI and DL based medical image segmentation, 3D visualization and surgical planning procedures are systematically reviewed. For the intra-operative stage, the development of novel image registration, surgical tool calibration and real-time navigation are reviewed. Furthermore, the combination of the surgical navigation system with AR and robotic technology is also discussed. Finally, the current issues and prospects of the IGOS system are discussed, with the goal of establishing a reference and providing guidance for surgeons, engineers, and researchers involved in the research and development of this area.
Collapse
Affiliation(s)
- Xingqi Fan
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiyang Zhu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Puxun Tu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Lacroix M, Aouad T, Feydy J, Biau D, Larousserie F, Fournier L, Feydy A. Artificial intelligence in musculoskeletal oncology imaging: A critical review of current applications. Diagn Interv Imaging 2023; 104:18-23. [PMID: 36270953 DOI: 10.1016/j.diii.2022.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 01/10/2023]
Abstract
Artificial intelligence (AI) is increasingly being studied in musculoskeletal oncology imaging. AI has been applied to both primary and secondary bone tumors and assessed for various predictive tasks that include detection, segmentation, classification, and prognosis. Still, in the field of clinical research, further efforts are needed to improve AI reproducibility and reach an acceptable level of evidence in musculoskeletal oncology. This review describes the basic principles of the most common AI techniques, including machine learning, deep learning and radiomics. Then, recent developments and current results of AI in the field of musculoskeletal oncology are presented. Finally, limitations and future perspectives of AI in this field are discussed.
Collapse
Affiliation(s)
- Maxime Lacroix
- Department of Radiology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France; Université Paris Cité, Faculté de Médecine, Paris, 75006, France; PARCC UMRS 970, INSERM, Paris 75015, France
| | - Theodore Aouad
- Université Paris-Saclay, CentraleSupélec, Inria, Centre for Visual Computing, 91190, Gif-sur-Yvette, France
| | - Jean Feydy
- Université Paris Cité, HeKA team, Inria Paris, Inserm, 75006, Paris, France
| | - David Biau
- Université Paris Cité, Faculté de Médecine, Paris, 75006, France; Department of Orthopedic Surgery, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, 75014, France
| | - Frédérique Larousserie
- Université Paris Cité, Faculté de Médecine, Paris, 75006, France; Department of Pathology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, 75014, France
| | - Laure Fournier
- Department of Radiology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France; Université Paris Cité, Faculté de Médecine, Paris, 75006, France; PARCC UMRS 970, INSERM, Paris 75015, France
| | - Antoine Feydy
- Université Paris Cité, Faculté de Médecine, Paris, 75006, France; Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, 75014, France
| |
Collapse
|
16
|
Hinterwimmer F, Consalvo S, Neumann J, Rueckert D, von Eisenhart-Rothe R, Burgkart R. Applications of machine learning for imaging-driven diagnosis of musculoskeletal malignancies-a scoping review. Eur Radiol 2022; 32:7173-7184. [PMID: 35852574 PMCID: PMC9474640 DOI: 10.1007/s00330-022-08981-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Musculoskeletal malignancies are a rare type of cancer. Consequently, sufficient imaging data for machine learning (ML) applications is difficult to obtain. The main purpose of this review was to investigate whether ML is already having an impact on imaging-driven diagnosis of musculoskeletal malignancies and what the respective reasons for this might be. A scoping review was conducted by a radiologist, an orthopaedic surgeon and a data scientist to identify suitable articles based on the PRISMA statement. Studies meeting the following criteria were included: primary malignant musculoskeletal tumours, machine/deep learning application, imaging data or data retrieved from images, human/preclinical, English language and original research. Initially, 480 articles were found and 38 met the eligibility criteria. Several continuous and discrete parameters related to publication, patient distribution, tumour specificities, ML methods, data and metrics were extracted from the final articles. For the synthesis, diagnosis-oriented studies were further examined by retrieving the number of patients and labels and metric scores. No significant correlations between metrics and mean number of samples were found. Several studies presented that ML could support imaging-driven diagnosis of musculoskeletal malignancies in distinct cases. However, data quality and quantity must be increased to achieve clinically relevant results. Compared to the experience of an expert radiologist, the studies used small datasets and mostly included only one type of data. Key to critical advancement of ML models for rare diseases such as musculoskeletal malignancies is a systematic, structured data collection and the establishment of (inter)national networks to obtain substantial datasets in the future. KEY POINTS: • Machine learning does not yet significantly impact imaging-driven diagnosis for musculoskeletal malignancies compared to other disciplines such as lung, breast or CNS cancer. • Research in the area of musculoskeletal tumour imaging and machine learning is still very limited. • Machine learning in musculoskeletal tumour imaging is impeded by insufficient availability of data and rarity of the disease.
Collapse
Affiliation(s)
- Florian Hinterwimmer
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany.
| | - Sarah Consalvo
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Neumann
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Rueckert
- Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany
| | - Rüdiger von Eisenhart-Rothe
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rainer Burgkart
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Bhattacharyya D, Thirupathi Rao N, Joshua ESN, Hu YC. A bi-directional deep learning architecture for lung nodule semantic segmentation. THE VISUAL COMPUTER 2022; 39:1-17. [PMID: 36097497 PMCID: PMC9453728 DOI: 10.1007/s00371-022-02657-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Lung nodules are abnormal growths and lesions may exist. Both lungs may have nodules. Most lung nodules are harmless (not cancerous/malignant). Pulmonary nodules are rare in lung cancer. X-rays and CT scans identify the lung nodules. Doctors may term the growth a lung spot, coin lesion, or shadow. It is necessary to obtain properly computed tomography (CT) scans of the lungs to get an accurate diagnosis and a good estimate of the severity of lung cancer. This study aims to design and evaluate a deep learning (DL) algorithm for identifying pulmonary nodules (PNs) using the LUNA-16 dataset and examine the prevalence of PNs using DB-Net. The paper states that a new, resource-efficient deep learning architecture is called for, and it has been given the name of DB-NET. When a physician orders a CT scan, they need to employ an accurate and efficient lung nodule segmentation method because they need to detect lung cancer at an early stage. However, segmentation of lung nodules is a difficult task because of the nodules' characteristics on the CT image as well as the nodules' concealed shape, visual quality, and context. The DB-NET model architecture is presented as a resource-efficient deep learning solution for handling the challenge at hand in this paper. Furthermore, it incorporates the Mish nonlinearity function and the mask class weights to improve segmentation effectiveness. In addition to the LUNA-16 dataset, which contained 1200 lung nodules collected during the LUNA-16 test, the LUNA-16 dataset was extensively used to train and assess the proposed model. The DB-NET architecture surpasses the existing U-NET model by a dice coefficient index of 88.89%, and it also achieves a similar level of accuracy to that of human experts.
Collapse
Affiliation(s)
- Debnath Bhattacharyya
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur, 522 502 India
| | - N. Thirupathi Rao
- Department of Computer Science and Engineering, Vignan’s Institute of Information Technology (A), Visakhapatnam, 530049 AP India
| | - Eali Stephen Neal Joshua
- Department of Computer Science and Engineering, Vignan’s Institute of Information Technology (A), Visakhapatnam, 530049 AP India
| | - Yu-Chen Hu
- Department of Computer Science and Information Management, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City, 43301 Taiwan R.O.C
| |
Collapse
|
18
|
Zhou X, Wang H, Feng C, Xu R, He Y, Li L, Tu C. Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges. Front Oncol 2022; 12:908873. [PMID: 35928860 PMCID: PMC9345628 DOI: 10.3389/fonc.2022.908873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Deep learning is a subfield of state-of-the-art artificial intelligence (AI) technology, and multiple deep learning-based AI models have been applied to musculoskeletal diseases. Deep learning has shown the capability to assist clinical diagnosis and prognosis prediction in a spectrum of musculoskeletal disorders, including fracture detection, cartilage and spinal lesions identification, and osteoarthritis severity assessment. Meanwhile, deep learning has also been extensively explored in diverse tumors such as prostate, breast, and lung cancers. Recently, the application of deep learning emerges in bone tumors. A growing number of deep learning models have demonstrated good performance in detection, segmentation, classification, volume calculation, grading, and assessment of tumor necrosis rate in primary and metastatic bone tumors based on both radiological (such as X-ray, CT, MRI, SPECT) and pathological images, implicating a potential for diagnosis assistance and prognosis prediction of deep learning in bone tumors. In this review, we first summarized the workflows of deep learning methods in medical images and the current applications of deep learning-based AI for diagnosis and prognosis prediction in bone tumors. Moreover, the current challenges in the implementation of the deep learning method and future perspectives in this field were extensively discussed.
Collapse
Affiliation(s)
- Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hua Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruilin Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Chao Tu,
| |
Collapse
|
19
|
Saadi SB, Ranjbarzadeh R, Ozeir kazemi, Amirabadi A, Ghoushchi SJ, Kazemi O, Azadikhah S, Bendechache M. Osteolysis: A Literature Review of Basic Science and Potential Computer-Based Image Processing Detection Methods. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:4196241. [PMID: 34646317 PMCID: PMC8505126 DOI: 10.1155/2021/4196241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Osteolysis is one of the most prominent reasons of revision surgeries in total joint arthroplasty. This biological phenomenon is induced by wear particles and corrosion products that stimulate inflammatory biological response of surrounding tissues. The eventual responses of osteolysis are the activation of macrophages leading to bone resorption and prosthesis failure. Various factors are involved in the initiation of osteolysis from biological issues, design, material specifications, and model of the prosthesis to the health condition of the patient. Nevertheless, the factors leading to osteolysis are sometimes preventable. Changes in implant design and polyethylene manufacturing are striving to improve overall wear. Osteolysis is clinically asymptomatic and can be diagnosed and analyzed during follow-up sessions through various imaging modalities and methods, such as serial radiographic, CT scan, MRI, and image processing-based methods, especially with the use of artificial neural network algorithms. Deep learning algorithms with a variety of neural network structures such as CNN, U-Net, and Seg-UNet have proved to be efficient algorithms for medical image processing specifically in the field of orthopedics for the detection and segmentation of tumors. These deep learning algorithms can effectively detect and analyze osteolytic lesions well in advance during follow-up sessions in order to administer proper treatments before reaching a critical point. Osteolysis can be treated surgically or nonsurgically with medications. However, revision surgeries are the only solution for the progressive osteolysis. In this literature review, the underlying causes, mechanisms, and treatments of osteolysis are discussed with the main focus on the possible computer-based methods and algorithms that can be effectively employed for the detection of osteolysis.
Collapse
Affiliation(s)
- Soroush Baseri Saadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Ramin Ranjbarzadeh
- Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Ozeir kazemi
- PPD - Global Pharmaceutical Contract Research Organization, Central Lab, Zaventem, Belgium
| | - Amir Amirabadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | | | | | - Sonya Azadikhah
- R.E.D. Laboratories N.V./S.A., Z.1 Researchpark, Zellik, Belgium
| | - Malika Bendechache
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Dublin, Ireland
| |
Collapse
|