1
|
Shayegan MJ. A brief review and scientometric analysis on ensemble learning methods for handling COVID-19. Heliyon 2024; 10:e26694. [PMID: 38420425 PMCID: PMC10901105 DOI: 10.1016/j.heliyon.2024.e26694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous efforts and research have been conducted worldwide to combat the coronavirus disease 2019 (COVID-19) pandemic. In this regard, some researchers have focused on deep and machine-learning approaches to discover more about this disease. There have been many articles on using ensemble learning methods for COVID-19 detection. Still, there seems to be no scientometric analysis or a brief review of these researches. Hence, a combined method of scientometric analysis and brief review was used to study the published articles that employed an ensemble learning approach to detect COVID-19. This research used both methods to overcome their limitations, leading to enhanced and reliable outcomes. The related articles were retrieved from the Scopus database. Then a two-step procedure was employed. A concise review of the collected articles was conducted. Then they underwent scientometric and bibliometric analyses. The findings revealed that convolutional neural network (CNN) is the mostly employed algorithm, while support vector machine (SVM), random forest, Resnet, DenseNet, and visual geometry group (VGG) were also frequently used. Additionally, China has had a significant presence in the numerous top-ranking categories of this field of research. Both study phases yielded valuable results and rankings.
Collapse
|
2
|
Hou Y, Navarro-Cía M. A computationally-inexpensive strategy in CT image data augmentation for robust deep learning classification in the early stages of an outbreak. Biomed Phys Eng Express 2023; 9:055003. [PMID: 37413977 DOI: 10.1088/2057-1976/ace4cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has spread globally for over three years, and chest computed tomography (CT) has been used to diagnose COVID-19 and identify lung damage in COVID-19 patients. Given its widespread, CT will remain a common diagnostic tool in future pandemics, but its effectiveness at the beginning of any pandemic will depend strongly on the ability to classify CT scans quickly and correctly when only limited resources are available, as it will happen inevitably again in future pandemics. Here, we resort into the transfer learning procedure and limited hyperparameters to use as few computing resources as possible for COVID-19 CT images classification. Advanced Normalisation Tools (ANTs) are used to synthesise images as augmented/independent data and trained on EfficientNet to investigate the effect of synthetic images. On the COVID-CT dataset, classification accuracy increases from 91.15% to 95.50% and Area Under the Receiver Operating Characteristic (AUC) from 96.40% to 98.54%. We also customise a small dataset to simulate data collected in the early stages of the outbreak and report an improvement in accuracy from 85.95% to 94.32% and AUC from 93.21% to 98.61%. This study provides a feasible Low-Threshold, Easy-To-Deploy and Ready-To-Use solution with a relatively low computational cost for medical image classification at an early stage of an outbreak in which scarce data are available and traditional data augmentation may fail. Hence, it would be most suitable for low-resource settings.
Collapse
Affiliation(s)
- Yikun Hou
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Miguel Navarro-Cía
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Junaid M, Ali S, Eid F, El-Sappagh S, Abuhmed T. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 234:107495. [PMID: 37003039 DOI: 10.1016/j.cmpb.2023.107495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Parkinson's Disease (PD) is a devastating chronic neurological condition. Machine learning (ML) techniques have been used in the early prediction of PD progression. Fusion of heterogeneous data modalities proved its capability to improve the performance of ML models. Time series data fusion supports the tracking of the disease over time. In addition, the trustworthiness of the resulting models is improved by adding model explainability features. The literature on PD has not sufficiently explored these three points. METHODS In this work, we proposed an ML pipeline for predicting the progression of PD that is both accurate and explainable. We explore the fusion of different combinations of five time series modalities from the Parkinson's Progression Markers Initiative (PPMI) real-world dataset, including patient characteristics, biosamples, medication history, motor, and non-motor function data. Each patient has six visits. The problem has been formulated in two ways: ❶ a three-class based progression prediction with 953 patients in each time series modality, and ❷ a four-class based progression prediction with 1,060 patients in each time series modality. The statistical features of these six visits were calculated from each modality and diverse feature selection methods were applied to select the most informative feature sets. The extracted features were used to train a set of well-known ML models including Support vector machines (SVM), random forests (RF), extra tree classifier (ETC), light gradient boosting machines (LGBM), and stochastic gradient descent (SGD). We examined a number of data-balancing strategies in the pipeline with different combinations of modalities. ML models have been optimized using the Bayesian optimizer. A comprehensive evaluation of various ML methods has been conducted, and the best models have been extended to provide different explainability features. RESULTS We compare the performance of ML models before and after optimization and using and without using feature selection. In the three-class experiment and with various modality fusions, the LGBM model produced the most accurate results with a 10-fold cross-validation (10-CV) accuracy of 90.73% using non-motor function modality. RF produced the best results in the four-class experiment with various modality fusions with a 10-CV accuracy of 94.57% using non-motor modality. With the fused dataset of non-motor and motor function modalities, the LGBM model outperformed the other ML models in both the 3-class and 4-class experiments (i.e., 10-CV accuracy of 94.89% and 93.73%, respectively). Using the Shapely Additive Explanations (SHAP) framework, we employed global and instance-based explanations to explain the behavior of each ML classifier. Moreover, we extended the explainability by implementing the LIME and SHAPASH local explainers. The consistency of these explainers has been explored. The resultant classifiers were accurate, explainable, and thus medically more relevant and applicable. CONCLUSIONS The select modalities and feature sets were confirmed by the literature and medical experts. The various explainers suggest that the bradykinesia (NP3BRADY) feature was the most dominant and consistent. By providing thorough insights into the influence of multiple modalities on the disease risk, the suggested approach is expected to help improve the clinical knowledge of PD progression processes.
Collapse
Affiliation(s)
- Muhammad Junaid
- Information Laboratory (InfoLab), Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sajid Ali
- Information Laboratory (InfoLab), Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Fatma Eid
- Technology Management, Stony Brook University, New York 11794, USA.
| | - Shaker El-Sappagh
- Information Laboratory (InfoLab), College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, South Korea; Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt; Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha, 13518, Egypt.
| | - Tamer Abuhmed
- Information Laboratory (InfoLab), College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Feng Y, Sim Zheng Ting J, Xu X, Bee Kun C, Ong Tien En E, Irawan Tan Wee Jun H, Ting Y, Lei X, Chen WX, Wang Y, Li S, Cui Y, Wang Z, Zhen L, Liu Y, Siow Mong Goh R, Tan CH. Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs. Diagnostics (Basel) 2023; 13:diagnostics13081397. [PMID: 37189498 DOI: 10.3390/diagnostics13081397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Chest X-rays (CXRs) are essential in the preliminary radiographic assessment of patients affected by COVID-19. Junior residents, as the first point-of-contact in the diagnostic process, are expected to interpret these CXRs accurately. We aimed to assess the effectiveness of a deep neural network in distinguishing COVID-19 from other types of pneumonia, and to determine its potential contribution to improving the diagnostic precision of less experienced residents. A total of 5051 CXRs were utilized to develop and assess an artificial intelligence (AI) model capable of performing three-class classification, namely non-pneumonia, non-COVID-19 pneumonia, and COVID-19 pneumonia. Additionally, an external dataset comprising 500 distinct CXRs was examined by three junior residents with differing levels of training. The CXRs were evaluated both with and without AI assistance. The AI model demonstrated impressive performance, with an Area under the ROC Curve (AUC) of 0.9518 on the internal test set and 0.8594 on the external test set, which improves the AUC score of the current state-of-the-art algorithms by 1.25% and 4.26%, respectively. When assisted by the AI model, the performance of the junior residents improved in a manner that was inversely proportional to their level of training. Among the three junior residents, two showed significant improvement with the assistance of AI. This research highlights the novel development of an AI model for three-class CXR classification and its potential to augment junior residents' diagnostic accuracy, with validation on external data to demonstrate real-world applicability. In practical use, the AI model effectively supported junior residents in interpreting CXRs, boosting their confidence in diagnosis. While the AI model improved junior residents' performance, a decline in performance was observed on the external test compared to the internal test set. This suggests a domain shift between the patient dataset and the external dataset, highlighting the need for future research on test-time training domain adaptation to address this issue.
Collapse
Affiliation(s)
- Yangqin Feng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jordan Sim Zheng Ting
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Xinxing Xu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Chew Bee Kun
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Edward Ong Tien En
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hendra Irawan Tan Wee Jun
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yonghan Ting
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Xiaofeng Lei
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Wen-Xiang Chen
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yan Wang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Shaohua Li
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yingnan Cui
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Zizhou Wang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Liangli Zhen
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yong Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Rick Siow Mong Goh
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, 11, Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
5
|
An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models. Neural Comput Appl 2023; 35:10695-10716. [PMID: 37155550 PMCID: PMC10015549 DOI: 10.1007/s00521-023-08258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/06/2023] [Indexed: 03/17/2023]
Abstract
Emergency medicine (EM) is one of the attractive research fields in which researchers investigate their efforts to diagnose and treat unforeseen illnesses or injuries. There are many tests and observations are involved in EM. Detection of the level of consciousness is one of these observations, which can be detected using several methods. Among these methods, the automatic estimation of the Glasgow coma scale (GCS) is studied in this paper. The GCS is a medical score used to describe a patient’s level of consciousness. This type of scoring system requires medical examination that may not be available with the shortage of the medical expert. Therefore, the automatic medical calculation for a patient’s level of consciousness is highly needed. Artificial intelligence has been deployed in several applications and appears to have a high performance regarding providing automatic solutions. The main objective of this work is to introduce the edge/cloud system to improve the efficiency of the consciousness measurement through efficient local data processing. Moreover, an efficient machine learning (ML) model to predict the level of consciousness of a certain patient based on the patient’s demographic, vital signs, and laboratory tests is proposed, as well as maintaining the explainability issue using Shapley additive explanations (SHAP) that provides natural language explanation in a form that helps the medical expert to understand the final prediction. The developed ML model is validated using vital signs and laboratory tests extracted from the MIMIC III dataset, and it achieves superior performance (mean absolute error (MAE) = 0.269, mean square error (MSE) = 0.625, R2 score = 0.964). The resulting model is accurate, medically intuitive, and trustworthy.
Collapse
|
6
|
Hasan MM, Islam MU, Sadeq MJ, Fung WK, Uddin J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. SENSORS (BASEL, SWITZERLAND) 2023; 23:527. [PMID: 36617124 PMCID: PMC9824505 DOI: 10.3390/s23010527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Artificial intelligence has significantly enhanced the research paradigm and spectrum with a substantiated promise of continuous applicability in the real world domain. Artificial intelligence, the driving force of the current technological revolution, has been used in many frontiers, including education, security, gaming, finance, robotics, autonomous systems, entertainment, and most importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and detection methods using artificial intelligence have been employed to understand, forecast, handle, and curtail the ensuing threats. In this study, the most recent related publications, methodologies and medical reports were investigated with the purpose of studying artificial intelligence's role in the pandemic. This study presents a comprehensive review of artificial intelligence with specific attention to machine learning, deep learning, image processing, object detection, image segmentation, and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular, genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classification, socio-demographic data analysis, anomaly detection, health monitoring, personal protective equipment (PPE) observation, social control, and COVID-19 patients' mortality risk approaches were used in this study to forecast the threatening factors of COVID-19. This study demonstrates that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were quite effective and efficient in COVID-19 detection and forecasting insights which were actionable through wide usage. The results produced by the study prove that artificial intelligence is a promising arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and to the development of the healthcare sector on a global scale. We prove that artificial intelligence indeed played a significantly important role in helping to fight against COVID-19, and the insightful knowledge provided here could be extremely beneficial for practitioners and research experts in the healthcare domain to implement the artificial-intelligence-based systems in curbing the next pandemic or healthcare disaster.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Wai-Keung Fung
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| |
Collapse
|
7
|
Al-Ahmadi S, Mohammad F. Pattern recognition of omicron variants from amalgamated multi-focus EEG signals and X-ray images using deep transfer learning. EGYPTIAN INFORMATICS JOURNAL 2023. [PMCID: PMC9853270 DOI: 10.1016/j.eij.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Ozsahin DU, Isa NA, Uzun B. The Capacity of Artificial Intelligence in COVID-19 Response: A Review in Context of COVID-19 Screening and Diagnosis. Diagnostics (Basel) 2022; 12:2943. [PMID: 36552949 PMCID: PMC9777320 DOI: 10.3390/diagnostics12122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Artificial intelligence (AI) has been shown to solve several issues affecting COVID-19 diagnosis. This systematic review research explores the impact of AI in early COVID-19 screening, detection, and diagnosis. A comprehensive survey of AI in the COVID-19 literature, mainly in the context of screening and diagnosis, was observed by applying the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Data sources for the years 2020, 2021, and 2022 were retrieved from google scholar, web of science, Scopus, and PubMed, with target keywords relating to AI in COVID-19 screening and diagnosis. After a comprehensive review of these studies, the results found that AI contributed immensely to improving COVID-19 screening and diagnosis. Some proposed AI models were shown to have comparable (sometimes even better) clinical decision outcomes, compared to experienced radiologists in the screening/diagnosing of COVID-19. Additionally, AI has the capacity to reduce physician work burdens and fatigue and reduce the problems of several false positives, associated with the RT-PCR test (with lower sensitivity of 60-70%) and medical imaging analysis. Even though AI was found to be timesaving and cost-effective, with less clinical errors, it works optimally under the supervision of a physician or other specialists.
Collapse
Affiliation(s)
- Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Sciences, Sharjah University, Sharjah P.O. Box 27272, United Arab Emirates
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Nuhu Abdulhaqq Isa
- Department of Biomedical Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Department of Biomedical Engineering, College of Health Science and Technology, Keffi 961101, Keffi Nasarawa State, Nigeria
| | - Berna Uzun
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Department of Statistics, Carlos III Madrid University, 28903 Getafe, Madrid, Spain
- Department of Mathematics, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| |
Collapse
|
9
|
Lasker A, Obaidullah SM, Chakraborty C, Roy K. Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review. SN COMPUTER SCIENCE 2022; 4:65. [PMID: 36467853 PMCID: PMC9702883 DOI: 10.1007/s42979-022-01464-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
Lung, being one of the most important organs in human body, is often affected by various SARS diseases, among which COVID-19 has been found to be the most fatal disease in recent times. In fact, SARS-COVID 19 led to pandemic that spreads fast among the community causing respiratory problems. Under such situation, radiological imaging-based screening [mostly chest X-ray and computer tomography (CT) modalities] has been performed for rapid screening of the disease as it is a non-invasive approach. Due to scarcity of physician/chest specialist/expert doctors, technology-enabled disease screening techniques have been developed by several researchers with the help of artificial intelligence and machine learning (AI/ML). It can be remarkably observed that the researchers have introduced several AI/ML/DL (deep learning) algorithms for computer-assisted detection of COVID-19 using chest X-ray and CT images. In this paper, a comprehensive review has been conducted to summarize the works related to applications of AI/ML/DL for diagnostic prediction of COVID-19, mainly using X-ray and CT images. Following the PRISMA guidelines, total 265 articles have been selected out of 1715 published articles till the third quarter of 2021. Furthermore, this review summarizes and compares varieties of ML/DL techniques, various datasets, and their results using X-ray and CT imaging. A detailed discussion has been made on the novelty of the published works, along with advantages and limitations.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Chandan Chakraborty
- Department of Computer Science & Engineering, National Institute of Technical Teachers’ Training & Research Kolkata, Kolkata, India
| | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
10
|
Kuanr M, Mohapatra P, Mittal S, Maindarkar M, Fouda MM, Saba L, Saxena S, Suri JS. Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity. Diagnostics (Basel) 2022; 12:2700. [PMID: 36359545 PMCID: PMC9689970 DOI: 10.3390/diagnostics12112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 09/09/2023] Open
Abstract
Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.
Collapse
Affiliation(s)
- Madhusree Kuanr
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | | | - Sanchi Mittal
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09123 Cagliari, Italy
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
- Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| |
Collapse
|
11
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Gomes R, Kamrowski C, Mohan PD, Senor C, Langlois J, Wildenberg J. Application of Deep Learning to IVC Filter Detection from CT Scans. Diagnostics (Basel) 2022; 12:diagnostics12102475. [PMID: 36292164 PMCID: PMC9600884 DOI: 10.3390/diagnostics12102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
IVC filters (IVCF) perform an important function in select patients that have venous blood clots. However, they are usually intended to be temporary, and significant delay in removal can have negative health consequences for the patient. Currently, all Interventional Radiology (IR) practices are tasked with tracking patients in whom IVCF are placed. Due to their small size and location deep within the abdomen it is common for patients to forget that they have an IVCF. Therefore, there is a significant delay for a new healthcare provider to become aware of the presence of a filter. Patients may have an abdominopelvic CT scan for many reasons and, fortunately, IVCF are clearly visible on these scans. In this research a deep learning model capable of segmenting IVCF from CT scan slices along the axial plane is developed. The model achieved a Dice score of 0.82 for training over 372 CT scan slices. The segmentation model is then integrated with a prediction algorithm capable of flagging an entire CT scan as having IVCF. The prediction algorithm utilizing the segmentation model achieved a 92.22% accuracy at detecting IVCF in the scans.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA
- Correspondence: (R.G.); (J.W.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA
| | - Pavithra Devy Mohan
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA
| | - Cameron Senor
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA
| | - Joseph Wildenberg
- Interventional Radiology, Mayo Clinic Health System, Eau Claire, WI 54703, USA
- Correspondence: (R.G.); (J.W.)
| |
Collapse
|
13
|
Gomes R, Kamrowski C, Langlois J, Rozario P, Dircks I, Grottodden K, Martinez M, Tee WZ, Sargeant K, LaFleur C, Haley M. A Comprehensive Review of Machine Learning Used to Combat COVID-19. Diagnostics (Basel) 2022; 12:1853. [PMID: 36010204 PMCID: PMC9406981 DOI: 10.3390/diagnostics12081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Papia Rozario
- Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA;
| | - Ian Dircks
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Keegan Grottodden
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Matthew Martinez
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Wei Zhong Tee
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Kyle Sargeant
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Corbin LaFleur
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Mitchell Haley
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| |
Collapse
|
14
|
Latif G, Morsy H, Hassan A, Alghazo J. Novel Coronavirus and Common Pneumonia Detection from CT Scans Using Deep Learning-Based Extracted Features. Viruses 2022; 14:v14081667. [PMID: 36016288 PMCID: PMC9414828 DOI: 10.3390/v14081667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19 which was announced as a pandemic on 11 March 2020, is still infecting millions to date as the vaccines that have been developed do not prevent the disease but rather reduce the severity of the symptoms. Until a vaccine is developed that can prevent COVID-19 infection, the testing of individuals will be a continuous process. Medical personnel monitor and treat all health conditions; hence, the time-consuming process to monitor and test all individuals for COVID-19 becomes an impossible task, especially as COVID-19 shares similar symptoms with the common cold and pneumonia. Some off-the-counter tests have been developed and sold, but they are unreliable and add an additional burden because false-positive cases have to visit hospitals and perform specialized diagnostic tests to confirm the diagnosis. Therefore, the need for systems that can automatically detect and diagnose COVID-19 automatically without human intervention is still an urgent priority and will remain so because the same technology can be used for future pandemics and other health conditions. In this paper, we propose a modified machine learning (ML) process that integrates deep learning (DL) algorithms for feature extraction and well-known classifiers that can accurately detect and diagnose COVID-19 from chest CT scans. Publicly available datasets were made available by the China Consortium for Chest CT Image Investigation (CC-CCII). The highest average accuracy obtained was 99.9% using the modified ML process when 2000 features were extracted using GoogleNet and ResNet18 and using the support vector machine (SVM) classifier. The results obtained using the modified ML process were higher when compared to similar methods reported in the extant literature using the same datasets or different datasets of similar size; thus, this study is considered of added value to the current body of knowledge. Further research in this field is required to develop methods that can be applied in hospitals and can better equip mankind to be prepared for any future pandemics.
Collapse
Affiliation(s)
- Ghazanfar Latif
- Computer Science Department, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
- Department of Computer Sciences and Mathematics, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada
- Correspondence: or
| | - Hamdy Morsy
- Department of Applied Natural Sciences, College of Community, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Electronics and communications, College of Engineering, Helwan University, Cairo 11792, Egypt
| | - Asmaa Hassan
- Faculty of Medicine, Helwan University, Helwan 11795, Egypt;
| | - Jaafar Alghazo
- Department of Electrical and Computer Engineering, Virginia Military Institute, Lexington, VA 24450, USA;
| |
Collapse
|
15
|
Alguacil Ojeda J. [Biomedical research and innovation and COVID-19 syndemic. SESPAS Report 2022]. GACETA SANITARIA 2022; 36 Suppl 1:S87-S92. [PMID: 35781155 PMCID: PMC9244786 DOI: 10.1016/j.gaceta.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/23/2022]
Abstract
Objetivo Describir críticamente la respuesta en investigación e innovación (I + I) contra la sindemia por COVID-19 en el ámbito nacional, contextualizada internacionalmente. Método Revisión narrativa dirigida. Resultados En la sindemia por COVID-19 se ha pasado la presión a la comunidad científica en general, e innovadora biomédica en particular, para aportar soluciones sobre todo de productos biotecnológicos. La mayoría de las recomendaciones de paneles expertos no van orientadas a una respuesta biotecnológica (que también debe existir), sino de gobernanza, organizativa, socioeconómica y de apoyo a las infraestructuras de salud pública. Existe un déficit importante en la inclusión de la perspectiva de género en la I + I por COVID-19. La sindemia ha ofrecido una oportunidad (desaprovechada) para potenciar la I + I desde la perspectiva epidemiológica contra brotes infecciosos con potencial de provocar crisis en salud pública reivindicando el liderazgo desde la epidemiología. Hace falta evaluar si la gran inversión en I + I biomédica orientada a la medicina personalizada puede integrarse eficientemente en los proveedores públicos de salud ante crisis sanitarias. Conclusiones Es urgente diseñar una estrategia de I + I en España en línea con los fondos disponibles internacionalmente y que se beneficie de ellos, pero que provea al país del máximo de independencia de cara a afrontar situaciones críticas para la salud pública.
Collapse
Affiliation(s)
- Juan Alguacil Ojeda
- Centro de Investigación en Recursos Naturales, Medio Ambiente y Salud (RENSMA), Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, España; CIBER de Epidemiología y Salud Pública (CIBERESP), España.
| |
Collapse
|
16
|
Band SS, Ardabili S, Yarahmadi A, Pahlevanzadeh B, Kiani AK, Beheshti A, Alinejad-Rokny H, Dehzangi I, Chang A, Mosavi A, Moslehpour M. A Survey on Machine Learning and Internet of Medical Things-Based Approaches for Handling COVID-19: Meta-Analysis. Front Public Health 2022; 10:869238. [PMID: 35812486 PMCID: PMC9260273 DOI: 10.3389/fpubh.2022.869238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis, prioritization, screening, clustering, and tracking of patients with COVID-19, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, manage, and deal with this epidemic. Strategies backed by artificial intelligence (A.I.) and the Internet of Things (IoT) have been undeniably effective to understand how the virus works and prevent it from spreading. Accordingly, the main aim of this survey is to critically review the ML, IoT, and the integration of IoT and ML-based techniques in the applications related to COVID-19, from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach to tracking the disease spread. On the other hand, most of the studies developed by ML-based techniques aimed at the detection and handling of challenges associated with the COVID-19 pandemic. Among different approaches, Convolutional Neural Network (CNN), Support Vector Machine, Genetic CNN, and pre-trained CNN, followed by ResNet have demonstrated the best performances compared to other methods.
Collapse
Affiliation(s)
- Shahab S. Band
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Sina Ardabili
- Department of Informatics, J. Selye University, Komárom, Slovakia
| | - Atefeh Yarahmadi
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Bahareh Pahlevanzadeh
- Department of Design and System Operations, Regional Information Center for Science and Technology (R.I.C.E.S.T.), Shiraz, Iran
| | - Adiqa Kausar Kiani
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Amin Beheshti
- Department of Computing, Macquarie University, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, U.N.S.W. Sydney, Sydney, NSW, Australia
- U.N.S.W. Data Science Hub, The University of New South Wales (U.N.S.W. Sydney), Sydney, NSW, Australia
- Health Data Analytics Program, AI-enabled Processes (A.I.P.) Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, United States
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Arthur Chang
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Taiwan
| | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary
- Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Massoud Moslehpour
- Department of Business Administration, College of Management, Asia University, Taichung, Taiwan
- Department of Management, California State University, San Bernardino, CA, United States
| |
Collapse
|
17
|
Abstract
During the outbreak of the COVID-19 pandemic, social networks became the preeminent medium for communication, social discussion, and entertainment. Social network users are regularly expressing their opinions about the impacts of the coronavirus pandemic. Therefore, social networks serve as a reliable source for studying the topics, emotions, and attitudes of users that have been discussed during the pandemic. In this paper, we investigate the reactions and attitudes of people towards topics raised on social media platforms. We collected data of two large-scale COVID-19 datasets from Twitter and Instagram for six and three months, respectively. This paper analyzes the reaction of social network users in terms of different aspects including sentiment analysis, topic detection, emotions, and the geo-temporal characteristics of our dataset. We show that the dominant sentiment reactions on social media are neutral, while the most discussed topics by social network users are about health issues. This paper examines the countries that attracted a higher number of posts and reactions from people, as well as the distribution of health-related topics discussed in the most mentioned countries. We shed light on the temporal shift of topics over countries. Our results show that posts from the top-mentioned countries influence and attract more reactions worldwide than posts from other parts of the world.
Collapse
|
18
|
Albalawi U, Mustafa M. Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5901. [PMID: 35627437 PMCID: PMC9140632 DOI: 10.3390/ijerph19105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 (COVID-19) has been one of the worst global health crises in the 21st century. The currently available rollout vaccines are not 100% effective for COVID-19 due to the evolving nature of the virus. There is a real need for a concerted effort to fight the virus, and research from diverse fields must contribute. Artificial intelligence-based approaches have proven to be significantly effective in every branch of our daily lives, including healthcare and medical domains. During the early days of this pandemic, artificial intelligence (AI) was utilized in the fight against this virus outbreak and it has played a major role in containing the spread of the virus. It provided innovative opportunities to speed up the development of disease interventions. Several methods, models, AI-based devices, robotics, and technologies have been proposed and utilized for diverse tasks such as surveillance, spread prediction, peak time prediction, classification, hospitalization, healthcare management, heath system capacity, etc. This paper attempts to provide a quick, concise, and precise survey of the state-of-the-art AI-based techniques, technologies, and datasets used in fighting COVID-19. Several domains, including forecasting, surveillance, dynamic times series forecasting, spread prediction, genomics, compute vision, peak time prediction, the classification of medical imaging-including CT and X-ray and how they can be processed-and biological data (genome and protein sequences) have been investigated. An overview of the open-access computational resources and platforms is given and their useful tools are pointed out. The paper presents the potential research areas in AI and will thus encourage researchers to contribute to fighting against the virus and aid global health by slowing down the spread of the virus. This will be a significant contribution to help minimize the high death rate across the globe.
Collapse
Affiliation(s)
- Umar Albalawi
- Faculty of Computing and Information Technology, University of Tabuk, KSA, Tabuk 71491, Saudi Arabia;
- Industrial Innovation and Robotics Center, University of Tabuk, KSA, Tabuk 71491, Saudi Arabia
| | - Mohammed Mustafa
- Faculty of Computing and Information Technology, University of Tabuk, KSA, Tabuk 71491, Saudi Arabia;
- Industrial Innovation and Robotics Center, University of Tabuk, KSA, Tabuk 71491, Saudi Arabia
| |
Collapse
|
19
|
Building predictive model for COVID-19 using artificial neural network (ANN) algorithm. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns2.6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Machine learning plays an important role in addressing the pandemic crisis to analyse, identify and to forecast the infection and the spread of any contagious virus. Nowadays, most of the organizations and researchers are moving towards machine learning algorithms to develop predictive models, trying to reduce the death rate and to identify the patients who are at the increased risk of mortality. The major challenge of Covid-19 is, its identification and classification, due to the fact that the symptoms of Covid -19 are similar to other infectious diseases such as viral fever, typhoid, dengue, pneumonia and other lung infectious diseases. The objective of this paper is to build a predictive model for covid-19 using the Artificial Neural Network (ANN), a supervised machine learning Algorithm. In this study, the data set from Kaggle Sírio-Libanês data for AI and Analytics by the Data Intelligence Team has been used to build the predictive model. It is observed that there is 73% of accuracy in predicting the number of corona infected cases.
Collapse
|
20
|
Explainable Artificial Intelligence Approach for the Early Prediction of Ventilator Support and Mortality in COVID-19 Patients. COMPUTATION 2022. [DOI: 10.3390/computation10030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early prediction of mortality and risk of deterioration in COVID-19 patients can reduce mortality and increase the opportunity for better and more timely treatment. In the current study, the DL model and explainable artificial intelligence (EAI) were combined to identify the impact of certain attributes on the prediction of mortality and ventilatory support in COVID-19 patients. Nevertheless, the DL model does not suffer from the curse of dimensionality, but in order to identify significant attributes, the EAI feature importance method was used. The DL model produced significant results; however, it lacks interpretability. The study was performed using COVID-19-hospitalized patients in King Abdulaziz Medical City, Riyadh. The dataset contains the patients’ demographic information, laboratory investigations, and chest X-ray (CXR) findings. The dataset used suffers from an imbalance; therefore, balanced accuracy, sensitivity, specificity, Youden index, and AUC measures were used to investigate the effectiveness of the proposed model. Furthermore, the experiments were conducted using original and SMOTE (over and under sampled) datasets. The proposed model outperforms the baseline study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality using the full-feature set. Meanwhile, for predicting ventilator support a highest balanced accuracy of 0.979 and an AUC of 0.981 was achieved. The proposed explainable prediction model will assist doctors in the early prediction of COVID-19 patients that are at risk of mortality or ventilatory support and improve the management of hospital resources.
Collapse
|
21
|
Ijaz A, Nabeel M, Masood U, Mahmood T, Hashmi MS, Posokhova I, Rizwan A, Imran A. Towards using cough for respiratory disease diagnosis by leveraging Artificial Intelligence: A survey. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Abdeldayem OM, Dabbish AM, Habashy MM, Mostafa MK, Elhefnawy M, Amin L, Al-Sakkari EG, Ragab A, Rene ER. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149834. [PMID: 34525746 PMCID: PMC8379898 DOI: 10.1016/j.scitotenv.2021.149834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands finding new detection methods for future viral outbreaks. The environment's transmission pathways include and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complementary clinical testing method. Another investigated outbreak surveillance technique that has not been yet implemented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks. This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current updates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-makers. The framework exploits available data from reliable sources to discover meaningful insights and knowledge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk maps and vulnerable areas, and estimate the number of infected citizens.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Areeg M Dabbish
- Biotechnology Graduate Program, Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohamed K Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mohamed Elhefnawy
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Lobna Amin
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Built Environment, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Ahmed Ragab
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
23
|
Osman RA, Saleh SN, Saleh YNM, Elagamy MN. A Reliable and Efficient Tracking System Based on Deep Learning for Monitoring the Spread of COVID-19 in Closed Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12941. [PMID: 34948549 PMCID: PMC8701443 DOI: 10.3390/ijerph182412941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Since 2020, the world is still facing a global economic and health crisis due to the COVID-19 pandemic. One approach to fighting this global crisis is to track COVID-19 cases by wireless technologies, which requires receiving reliable, efficient, and accurate data. Consequently, this article proposes a model based on Lagrange optimization and a distributed deep learning model to assure that all required data for tracking any suspected COVID-19 patient is received efficiently and reliably. Finding the optimum location of the Radio Frequency Identifier (RFID) reader relevant to the base station results in the reliable transmission of data. The proposed deep learning model, developed using the one-dimensional convolutional neural network and a fully connected network, resulted in lower mean absolute squared errors when compared to state-of-the-art regression benchmarks. The proposed model based on Lagrange optimization and deep learning algorithms is evaluated when changing different network parameters, such as requiring signal-to-interference-plus-noise-ratio, reader transmission power, and the required system quality-of-service. The analysis of the obtained results, which indicates the appropriate transmission distance between an RFID reader and a base station, shows the effectiveness and the accuracy of the proposed approach, which leads to an easy and efficient tracking system.
Collapse
Affiliation(s)
- Radwa Ahmed Osman
- Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt
| | - Sherine Nagy Saleh
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt;
| | - Yasmine N. M. Saleh
- Computer Science Department, College of Computing and Information Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt;
| | - Mazen Nabil Elagamy
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt;
| |
Collapse
|