1
|
Kong X, Gao P, Jiang Y, Lu L, Zhao M, Liu Y, Deng G, Zhu H, Cao Y, Ma L. Discrimination of SARS-CoV-2 omicron variant and its lineages by rapid detection of immune-escape mutations in spike protein RBD using asymmetric PCR-based melting curve analysis. Virol J 2023; 20:192. [PMID: 37626353 PMCID: PMC10463914 DOI: 10.1186/s12985-023-02137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 Omicron strain has multiple immune-escape mutations in the spike protein receptor-binding domain (RBD). Rapid detection of these mutations to identify Omicron and its lineages is essential for guiding public health strategies and patient treatments. We developed a two-tube, four-color assay employing asymmetric polymerase chain reaction (PCR)-based melting curve analysis to detect Omicron mutations and discriminate the BA.1, BA.2, BA.4/5, and BA.2.75 lineages. METHODS The presented technique involves combinatory analysis of the detection of six fluorescent probes targeting the immune-escape mutations L452R, N460K, E484A, F486V, Q493R, Q498R, and Y505H within one amplicon in the spike RBD and probes targeting the ORF1ab and N genes. After protocol optimization, the analytical performance of the technique was evaluated using plasmid templates. Sensitivity was assessed based on the limit of detection (LOD), and reliability was assessed by calculating the intra- and inter-run precision of melting temperatures (Tms). Specificity was assessed using pseudotyped lentivirus of common human respiratory pathogens and human genomic DNA. The assay was used to analyze 40 SARS-CoV-2-positive clinical samples (including 36 BA.2 and 4 BA.4/5 samples) and pseudotyped lentiviruses of wild-type and BA.1 viral RNA control materials, as well as 20 SARS-CoV-2-negative clinical samples, and its accuracy was evaluated by comparing the results with those of sequencing. RESULTS All genotypes were sensitively identified using the developed method with a LOD of 39.1 copies per reaction. The intra- and inter-run coefficients of variation for the Tms were ≤ 0.69% and ≤ 0.84%, with standard deviations ≤ 0.38 °C and ≤ 0.41 °C, respectively. Validation of the assay using known SARS-CoV-2-positive samples demonstrated its ability to correctly identify the targeted mutations and preliminarily characterize the Omicron lineages. CONCLUSION The developed assay can provide accurate, reliable, rapid, simple and low-cost detection of the immune-escape mutations located in the spike RBD to detect the Omicron variant and discriminate its lineages, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Lixia Lu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Guoxiong Deng
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haoyan Zhu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
3
|
Jiang W, Ji W, Zhang Y, Xie Y, Chen S, Jin Y, Duan G. An Update on Detection Technologies for SARS-CoV-2 Variants of Concern. Viruses 2022; 14:v14112324. [PMID: 36366421 PMCID: PMC9693800 DOI: 10.3390/v14112324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the global epidemic of Coronavirus Disease 2019 (COVID-19), with a significant impact on the global economy and human safety. Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard for detecting SARS-CoV-2, but because the virus's genome is prone to mutations, the effectiveness of vaccines and the sensitivity of detection methods are declining. Variants of concern (VOCs) include Alpha, Beta, Gamma, Delta, and Omicron, which are able to evade recognition by host immune mechanisms leading to increased transmissibility, morbidity, and mortality of COVID-19. A range of research has been reported on detection techniques for VOCs, which is beneficial to prevent the rapid spread of the epidemic, improve the effectiveness of public health and social measures, and reduce the harm to human health and safety. However, a meaningful translation of this that reduces the burden of disease, and delivers a clear and cohesive message to guide daily clinical practice, remains preliminary. Herein, we summarize the capabilities of various nucleic acid and protein-based detection methods developed for VOCs in identifying and differentiating current VOCs and compare the advantages and disadvantages of each method, providing a basis for the rapid detection of VOCs strains and their future variants and the adoption of corresponding preventive and control measures.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqi Xie
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.C.); (Y.J.); (G.D.); Tel.: +86-13523408394 (S.C.); +86-0371-67781453 (Y.J.); +86-0371-67789797 (G.D.)
| |
Collapse
|
4
|
Cojocaru C, Cojocaru E, Turcanu A, Zaharia D. Clinical challenges of SARS‑CoV‑2 variants (Review). Exp Ther Med 2022; 23:416. [PMID: 35601074 PMCID: PMC9117961 DOI: 10.3892/etm.2022.11343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022] Open
Abstract
Since the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there have been challenges recognizing the clinical features of SARS-CoV-2 and identifying therapeutic options. This has been compounded by viral mutations that affect clinical response and primary epidemiological indicators. Multiple variants of SARS-CoV-2 have been identified and classified on the basis of nomenclature implemented by scientific organizations and the World Health Organisation (WHO). A total of five variants of concern (VOCs) have been identified to date. The present study aimed to analyse clinical and epidemiological features of each variant. Based on these characteristics, predictions were made about potential future evolution. Considering the time and location of SARS-CoV-2 VOC emergence, it was hypothesised that mutations were not due to pressure caused by the vaccines introduced in December 2020 but were dependent on natural characteristics of the virus. In the process of adapting to the human body, SARS-CoV-2 is expected to undergo evolution to become more contagious but less deadly. SARS-CoV-2 was hypothesized to continue spread through isolated epidemic outbreaks due to the unimmunized population, mostly unvaccinated children and adults, and for coronaviruses to continue to present a public health problem.
Collapse
Affiliation(s)
- Cristian Cojocaru
- Medical III Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Morpho‑Functional Sciences II Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adina Turcanu
- Medical III Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Zaharia
- Department 4 Cardio‑thoracic Pathology, Faculty of Medicine, University of Medicine and Pharmacy ‘Carol Davila’, 050471 Bucharest, Romania
| |
Collapse
|
5
|
Aoki A, Mori Y, Okamoto Y, Jinno H. Simultaneous Screening of SARS-CoV-2 Omicron and Delta Variants Using High-Resolution Melting Analysis. Biol Pharm Bull 2022; 45:394-396. [DOI: 10.1248/bpb.b21-01081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | |
Collapse
|
6
|
Neagu M, Constantin C, Surcel M. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413173. [PMID: 34948782 PMCID: PMC8700871 DOI: 10.3390/ijerph182413173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
The current COVID-19 pandemic has triggered an accelerated pace in all research domains, including reliable diagnostics methodology. Molecular diagnostics of the virus and its presence in biological samples relies on the RT-PCR method, the most used and validated worldwide. Nonconventional tests with improved parameters that are in the development stages will be presented, such as droplet digital PCR or CRISPR-based assays. These molecular tests were followed by rapid antigen testing along with the development of antibody tests, whether based on ELISA platform or on a chemiluminescent microparticle immunoassay. Less-conventional methods of testing antibodies (e.g., lateral flow immunoassay) are presented as well. Left somewhere in the backstage of COVID-19 research, immune cells and, furthermore, immune memory cells, are gaining the spotlight, more so in the vaccination context. Recently, methodologies using flow-cytometry evaluate circulating immune cells in infected/recovered patients. The appearance of new virus variants has triggered a surge for tests improvement. As the pandemic has entered an ongoing or postvaccination era, all methodologies that are used to monitor public health focus on diagnostic strategies and this review points out where gaps should be filled in both clinical and research settings.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Correspondence:
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
| |
Collapse
|