1
|
Ahmed T, Hasan SMT, Akter A, Tauheed I, Akhtar M, Rahman SIA, Bhuiyan TR, Ahmed T, Qadri F, Chowdhury F. Determining clinical biomarkers to predict long-term SARS-CoV-2 antibody response among COVID-19 patients in Bangladesh. Front Med (Lausanne) 2023; 10:1111037. [PMID: 37293303 PMCID: PMC10244648 DOI: 10.3389/fmed.2023.1111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Background Information on antibody responses following SARS-CoV-2 infection, including the magnitude and duration of responses, is limited. In this analysis, we aimed to identify clinical biomarkers that can predict long-term antibody responses following natural SARS-CoV-2 infection. Methodology In this prospective study, we enrolled 100 COVID-19 patients between November 2020 and February 2021 and followed them for 6 months. The association of clinical laboratory parameters on enrollment, including lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), C-reactive protein (CRP), ferritin, procalcitonin (PCT), and D-dimer, with predicting the geometric mean (GM) concentration of SARS-CoV-2 receptor-binding domain (RBD)-specific IgG antibody at 3 and 6 months post-infection was assessed in multivariable linear regression models. Result The mean ± SD age of patients in the cohort was 46.8 ± 14 years, and 58.8% were male. Data from 68 patients at 3 months follow-up and 55 patients at 6 months follow-up were analyzed. Over 90% of patients were seropositive against RBD-specific IgG till 6 months post-infection. At 3 months, for any 10% increase in absolute lymphocyte count and NLR, there was a 6.28% (95% CI: 9.68, -2.77) decrease and 4.93% (95% CI: 2.43, 7.50) increase, respectively, in GM of IgG concentration, while any 10% increase for LDH, CRP, ferritin, and procalcitonin was associated with a 10.63, 2.87, 2.54, and 3.11% increase in the GM of IgG concentration, respectively. Any 10% increase in LDH, CRP, and ferritin was similarly associated with an 11.28, 2.48, and 3.0% increase in GM of IgG concentration at 6 months post-infection. Conclusion Several clinical biomarkers in the acute phase of SARS-CoV-2 infection are associated with enhanced IgG antibody response detected after 6 months of disease onset. The measurement of SARS-CoV-2 specific antibody responses requires improved techniques and is not feasible in all settings. Baseline clinical biomarkers can be a useful alternative as they can predict antibody response during the convalescence period. Individuals with an increased level of NLR, CRP, LDH, ferritin, and procalcitonin may benefit from the boosting effect of vaccines. Further analyses will determine whether biochemical parameters can predict RBD-specific IgG antibody responses at later time points and the association of neutralizing antibody responses.
Collapse
Affiliation(s)
- Tasnuva Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - S. M. Tafsir Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Marjahan Akhtar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sadia Isfat Ara Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Office of the Executive Director, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
2
|
Sayabovorn N, Phisalprapa P, Srivanichakorn W, Chaisathaphol T, Washirasaksiri C, Sitasuwan T, Tinmanee R, Kositamongkol C, Nimitpunya P, Mepramoon E, Ariyakunaphan P, Woradetsittichai D, Chayakulkeeree M, Phoompoung P, Mayurasakorn K, Sookrung N, Tungtrongchitr A, Wanitphakdeedecha R, Muangman S, Senawong S, Tangjittipokin W, Sanpawitayakul G, Nopmaneejumruslers C, Vamvanij V, Auesomwang C. Dynamics of Antibody Responses after Asymptomatic and Mild to Moderate SARS-CoV-2 Infections: Real-World Data in a Resource-Limited Country. Trop Med Infect Dis 2023; 8:tropicalmed8040185. [PMID: 37104311 PMCID: PMC10143231 DOI: 10.3390/tropicalmed8040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The dynamics of humoral immune responses of patients after SARS-CoV-2 infection is unclear. This study prospectively observed changes in anti-receptor binding domain immunoglobulin G (anti-RBD IgG) and neutralizing antibodies against the Wuhan and Delta strains at 1, 3, and 6 months postinfection between October 2021 and May 2022. Demographic data, clinical characteristics, baseline parameters, and blood samples of participants were collected. Of 5059 SARS-CoV-2 infected adult patients, only 600 underwent assessment at least once between 3 and 6 months after symptom onset. Patients were categorized as immunocompetent (n = 566), immunocompromised (n = 14), or reinfected (n = 20). A booster dose of a COVID-19 vaccine was strongly associated with maintained or increased COVID-19 antibody levels. The booster dose was also more strongly associated with antibody responses than the primary vaccination series. Among patients receiving a booster dose of a mRNA vaccine or a heterologous regimen, antibody levels remained steady or even increased for 3 to 6 months after symptom onset compared with inactivated or viral vector vaccines. There was a strong correlation between anti-RBD IgG and neutralizing antibodies against the Delta variant. This study is relevant to resource-limited countries for administering COVID-19 vaccines 3 to 6 months after infection.
Collapse
Affiliation(s)
- Naruemit Sayabovorn
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weerachai Srivanichakorn
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanet Chaisathaphol
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chaiwat Washirasaksiri
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tullaya Sitasuwan
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungsima Tinmanee
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chayanis Kositamongkol
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pongpol Nimitpunya
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Euarat Mepramoon
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pinyapat Ariyakunaphan
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Diana Woradetsittichai
- Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pakpoom Phoompoung
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Department of Research Group and Research Network, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungsima Wanitphakdeedecha
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saipin Muangman
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansnee Senawong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Gornmigar Sanpawitayakul
- Division of Ambulatory Paediatrics, Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Cherdchai Nopmaneejumruslers
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visit Vamvanij
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chonticha Auesomwang
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-7190
| |
Collapse
|
3
|
Cohen G, Jungsomsri P, Sangwongwanich J, Tawinprai K, Siripongboonsitti T, Porntharukchareon T, Wittayasak K, Thonwirak N, Soonklang K, Sornsamdang G, Auewarakul C, Mahanonda N. Immunogenicity and reactogenicity after heterologous prime-boost vaccination with CoronaVac and ChAdox1 nCov-19 (AZD1222) vaccines. Hum Vaccin Immunother 2022; 18:2052525. [PMID: 35323079 PMCID: PMC9115782 DOI: 10.1080/21645515.2022.2052525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass vaccination with a safe and effective vaccine may be the best way to control the COVID-19 pandemic. Heterologous prime-boost vaccination with the CoronaVac and AZD1222 vaccines may increase the immunogenicity elicited by either vaccine alone. This study sought to compare the immunogenicity of a heterologous CoronaVac and AZD1222 prime-boost with a homologous CoronaVac prime-boost. From July 13 to September 2, 2021, 88 participants were enrolled in the study. Half (n = 44) of the participants were assigned to the AZD1222/CoronaVac cohort and half were assigned to the CoronaVac/AZD1222 cohort. Both cohorts had a prime-boost interval of 4 weeks. A control group of 136 health care personnel who received the homologous CoronaVac/CoronaVac prime-boost was matched by age and sex to the experimental cohorts. The primary endpoint was the geometric mean ratio (GMR) of the anti-receptor binding domain (RBD) antibody concentration 4 weeks after the booster dose was administered. The CoronaVac/CoronaVac cohort served as the reference group. Baseline age and sex were similar, and the median age was 42.5 years. The GMR was 2.58 (95% confidence interval [CI] 1.80–3.71) and 8.69 (95% CI 6.05–12.47) in the AZD1222/CoronaVac and CoronaVac/AZD1222 cohorts, respectively. Reactogenicity was similar following prime and booster doses with the same vaccine. Findings indicated that the heterologous CoronaVac and AZD1222 prime-boost combination elicited a more robust immune response than the homologous CoronaVac prime-boost. While both heterologous prime-boost combinations showed similar reactogenicity, the immunogenicity of the CoronaVac/AZD1222 cohort was higher, indicating that the order of prime-boost vaccine administration was important.
Collapse
Affiliation(s)
- Guy Cohen
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pawornrath Jungsomsri
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Jirath Sangwongwanich
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | - Kasiruck Wittayasak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nawarat Thonwirak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Gaidganok Sornsamdang
- Central Laboratory Center, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chirayu Auewarakul
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nithi Mahanonda
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
4
|
Suntronwong N, Assawakosri S, Kanokudom S, Yorsaeng R, Auphimai C, Thongmee T, Vichaiwattana P, Duangchinda T, Chantima W, Pakchotanon P, Chansaenroj J, Nilyanimit P, Srimuan D, Thatsanatorn T, Sudhinaraset N, Wanlapakorn N, Mongkolsapaya J, Poovorawan Y. Strong Correlations between the Binding Antibodies against Wild-Type and Neutralizing Antibodies against Omicron BA.1 and BA.2 Variants of SARS-CoV-2 in Individuals Following Booster (Third-Dose) Vaccination. Diagnostics (Basel) 2022; 12:1781. [PMID: 35892491 PMCID: PMC9394243 DOI: 10.3390/diagnostics12081781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined the neutralizing activity and receptor-binding domain (RBD) antibody levels against wild-type and omicron BA.1 and BA.2 variants in individuals who received three doses of COVID-19 vaccination. The relationship between the anti-RBD IgG against wild-type and live virus neutralizing antibody titers against omicron BA.1 and BA.2 variants was examined. In total, 310 sera samples from individuals after booster vaccination (third-dose) were tested for specific IgG wild-type SARS-CoV-2 RBD and the omicron BA.1 surrogate virus neutralization test (sVNT). The live virus neutralization assay against omicron BA.1 and BA.2 was performed using the foci-reduction neutralization test (FRNT50). The anti-RBD IgG strongly correlated with FRNT50 titers against BA.1 and BA.2. Non-linear regression showed that anti-RBD IgG at the cut-off value ≥148 BAU/mL and ≥138 BAU/mL were related to the threshold for FRNT50 titers ≥20 against BA.1 and BA.2, respectively. A moderate correlation was observed between the sVNT and FRNT50 titers. At FRNT50 titers ≥20, the predicted sVNT for BA.1 and BA.2 was ≥10.57% and ≥11.52%, respectively. The study identified anti-RBD IgG and sVNT levels that predict detectable neutralizing antibodies against omicron variants. Assessment and monitoring of protective immunity support vaccine policies and will help identify optimal timing for booster vaccination.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand; (T.D.); (P.P.)
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand; (T.D.); (P.P.)
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Thaksaporn Thatsanatorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.S.); (S.A.); (S.K.); (R.Y.); (C.A.); (T.T.); (P.V.); (J.C.); (P.N.); (D.S.); (T.T.); (N.S.); (N.W.)
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|