1
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
2
|
Fuzzen M, Harper NBJ, Dhiyebi HA, Srikanthan N, Hayat S, Bragg LM, Peterson SW, Yang I, Sun JX, Edwards EA, Giesy JP, Mangat CS, Graber TE, Delatolla R, Servos MR. An improved method for determining frequency of multiple variants of SARS-CoV-2 in wastewater using qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163292. [PMID: 37030387 PMCID: PMC10079313 DOI: 10.1016/j.scitotenv.2023.163292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based surveillance has become an effective tool around the globe for indirect monitoring of COVID-19 in communities. Variants of Concern (VOCs) have been detected in wastewater by use of reverse transcription polymerase chain reaction (RT-PCR) or whole genome sequencing (WGS). Rapid, reliable RT-PCR assays continue to be needed to determine the relative frequencies of VOCs and sub-lineages in wastewater-based surveillance programs. The presence of multiple mutations in a single region of the N-gene allowed for the design of a single amplicon, multiple probe assay, that can distinguish among several VOCs in wastewater RNA extracts. This approach which multiplexes probes designed to target mutations associated with specific VOC's along with an intra-amplicon universal probe (non-mutated region) was validated in singleplex and multiplex. The prevalence of each mutation (i.e. VOC) is estimated by comparing the abundance of the targeted mutation with a non-mutated and highly conserved region within the same amplicon. This is advantageous for the accurate and rapid estimation of variant frequencies in wastewater. The N200 assay was applied to monitor frequencies of VOCs in wastewater extracts from several communities in Ontario, Canada in near real time from November 28, 2021 to January 4, 2022. This includes the period of the rapid replacement of the Delta variant with the introduction of the Omicron variant in these Ontario communities in early December 2021. The frequency estimates using this assay were highly reflective of clinical WGS estimates for the same communities. This style of qPCR assay, which simultaneously measures signal from a non-mutated comparator probe and multiple mutation-specific probes contained within a single qPCR amplicon, can be applied to future assay development for rapid and accurate estimations of variant frequencies.
Collapse
Affiliation(s)
- Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shelley W Peterson
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Ivy Yang
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - J X Sun
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Elizabeth A Edwards
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Chand S Mangat
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Bozidis P, Tsaousi ET, Kostoulas C, Sakaloglou P, Gouni A, Koumpouli D, Sakkas H, Georgiou I, Gartzonika K. Unusual N Gene Dropout and Ct Value Shift in Commercial Multiplex PCR Assays Caused by Mutated SARS-CoV-2 Strain. Diagnostics (Basel) 2022; 12:973. [PMID: 35454022 PMCID: PMC9029054 DOI: 10.3390/diagnostics12040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Several SARS-CoV-2 variants have emerged and early detection for monitoring their prevalence is crucial. Many identification strategies have been implemented in cases where sequencing data for confirmation is pending or not available. The presence of B.1.1.318 among prevalent variants was indicated by an unusual amplification pattern in various RT-qPCR commercial assays. Positive samples for SARS-CoV-2, as determined using the Allplex SARS-CoV-2 Assay, the Viasure SARS-CoV-2 Real Time Detection Kit and the GeneFinder COVID-19 Plus RealAmp Kit, presented a delay or failure in the amplification of the N gene, which was further investigated. Whole-genome sequencing was used for variant characterization. The differences between the mean Ct values for amplification of the N gene vs. other genes were calculated for each detection system and found to be at least 14 cycles. Sequencing by WGS revealed that all the N gene dropout samples contained the B.1.1.318 variant. All the isolates harbored three non-synonymous mutations in the N gene, which resulted in four amino acid changes (R203K, G204R, A208G, Met234I). Although caution should be taken when the identification of SARS-CoV-2 variants is based on viral gene amplification failure, such patterns could serve as a basis for rapid and cost-effective screening, functioning as indicators of community circulation of specific variants, requiring subsequent verification via sequencing.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Eleni T. Tsaousi
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Prodromos Sakaloglou
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Despoina Koumpouli
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Hercules Sakkas
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| |
Collapse
|