1
|
Ibrahim M, Khalil YA, Amirrajab S, Sun C, Breeuwer M, Pluim J, Elen B, Ertaylan G, Dumontier M. Generative AI for synthetic data across multiple medical modalities: A systematic review of recent developments and challenges. Comput Biol Med 2025; 189:109834. [PMID: 40023073 DOI: 10.1016/j.compbiomed.2025.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/03/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
This paper presents a comprehensive systematic review of generative models (GANs, VAEs, DMs, and LLMs) used to synthesize various medical data types, including imaging (dermoscopic, mammographic, ultrasound, CT, MRI, and X-ray), text, time-series, and tabular data (EHR). Unlike previous narrowly focused reviews, our study encompasses a broad array of medical data modalities and explores various generative models. Our aim is to offer insights into their current and future applications in medical research, particularly in the context of synthesis applications, generation techniques, and evaluation methods, as well as providing a GitHub repository as a dynamic resource for ongoing collaboration and innovation. Our search strategy queries databases such as Scopus, PubMed, and ArXiv, focusing on recent works from January 2021 to November 2023, excluding reviews and perspectives. This period emphasizes recent advancements beyond GANs, which have been extensively covered in previous reviews. The survey also emphasizes the aspect of conditional generation, which is not focused on in similar work. Key contributions include a broad, multi-modality scope that identifies cross-modality insights and opportunities unavailable in single-modality surveys. While core generative techniques are transferable, we find that synthesis methods often lack sufficient integration of patient-specific context, clinical knowledge, and modality-specific requirements tailored to the unique characteristics of medical data. Conditional models leveraging textual conditioning and multimodal synthesis remain underexplored but offer promising directions for innovation. Our findings are structured around three themes: (1) Synthesis applications, highlighting clinically valid synthesis applications and significant gaps in using synthetic data beyond augmentation, such as for validation and evaluation; (2) Generation techniques, identifying gaps in personalization and cross-modality innovation; and (3) Evaluation methods, revealing the absence of standardized benchmarks, the need for large-scale validation, and the importance of privacy-aware, clinically relevant evaluation frameworks. These findings emphasize the need for benchmarking and comparative studies to promote openness and collaboration.
Collapse
Affiliation(s)
- Mahmoud Ibrahim
- Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands; Department of Advanced Computing Sciences, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands; VITO, Belgium.
| | - Yasmina Al Khalil
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sina Amirrajab
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chang Sun
- Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands; Department of Advanced Computing Sciences, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Josien Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | - Michel Dumontier
- Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands; Department of Advanced Computing Sciences, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Wang X, Ren X, Jin G, Ying S, Wang J, Li J, Shi J. B-mode ultrasound-based CAD by learning using privileged information with dual-level missing modality completion. Comput Biol Med 2024; 182:109106. [PMID: 39241326 DOI: 10.1016/j.compbiomed.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Learning using privileged information (LUPI) has shown its effectiveness to improve the B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) by transferring knowledge from the elasticity ultrasound (EUS). However, LUPI only performs transfer learning between the paired data with shared labels, and cannot handle the scenario of modality imbalance. In order to conduct the supervised transfer learning between the paired ultrasound data together with the additional single-modal BUS images, a novel multi-view LUPI algorithm with Dual-Level Modality Completion, named DLMC-LUPI, is proposed to improve the performance of BUS-based CAD. The DLMC-LUPI implements both image-level and feature-level (dual-level) completions of missing EUS modality, and then performs multi-view LUPI for knowledge transfer. Specifically, in the dual-level modality completion stage, a variational autoencoder (VAE) model for feature generation and a novel generative adversarial network (VAE-based GAN) model for image generation are sequentially trained. The proposed VAE-based GAN can improve the synthesis quality of EUS images by adopting the features generated by VAE from the BUS images as the model constrain to make the features generated from the synthesized EUS images more similar to them. In the multi-view LUPI stage, two feature vectors are generated from the real or pseudo images as two source domains, and then fed them to the multi-view support vector machine plus classifier for model training. The experiments on two ultrasound datasets indicate that the DLMC-LUPI outperforms all the compared algorithms, and it can effectively improve the performance of single-modal BUS-based CAD.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, China
| | - Xinping Ren
- Ultrasound Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jin
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, China; School of Communication and Information Engineering, Jiangsu Open University, Jiangsu, China
| | - Shihui Ying
- Department of Mathematics, School of Science, Shanghai University, Shanghai, China
| | - Jun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, China
| | - Juncheng Li
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, China
| | - Jun Shi
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, China.
| |
Collapse
|
3
|
Song A, Li T, Ding X, Wu M, Wang R. TSE-GAN: strain elastography using generative adversarial network for thyroid disease diagnosis. Front Bioeng Biotechnol 2024; 12:1330713. [PMID: 38361791 PMCID: PMC10867782 DOI: 10.3389/fbioe.2024.1330713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Over the past 35 years, studies conducted worldwide have revealed a threefold increase in the incidence of thyroid cancer. Strain elastography is a new imaging technique to identify benign and malignant thyroid nodules due to its sensitivity to tissue stiffness. However, there are certain limitations of this technique, particularly in terms of standardization of the compression process, evaluation of results and several assumptions used in commercial strain elastography modes for the purpose of simplifying imaging analysis. In this work, we propose a novel conditional generative adversarial network (TSE-GAN) for automatically generating thyroid strain elastograms, which adopts a global-to-local architecture to improve the ability of extracting multi-scale features and develops an adaptive deformable U-net structure in the sub-generator to apply effective deformation. Furthermore, we introduce a Lab-based loss function to induce the networks to generate realistic thyroid elastograms that conform to the probability distribution of the target domain. Qualitative and quantitative assessments are conducted on a clinical dataset provided by Shanghai Sixth People's Hospital. Experimental results demonstrate that thyroid elastograms generated by the proposed TSE-GAN outperform state-of-the-art image translation methods in meeting the needs of clinical diagnostic applications and providing practical value.
Collapse
Affiliation(s)
- Anping Song
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Tianyi Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xuehai Ding
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Mingye Wu
- Department of Medical Ultrasonics, Shanghai University of Traditional Chinese Medicine Affiliated Shuguang Hospital, Shanghai, China
| | - Ren Wang
- Department of Ultrasound Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ansari MY, Qaraqe M, Righetti R, Serpedin E, Qaraqe K. Unveiling the future of breast cancer assessment: a critical review on generative adversarial networks in elastography ultrasound. Front Oncol 2023; 13:1282536. [PMID: 38125949 PMCID: PMC10731303 DOI: 10.3389/fonc.2023.1282536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
Elastography Ultrasound provides elasticity information of the tissues, which is crucial for understanding the density and texture, allowing for the diagnosis of different medical conditions such as fibrosis and cancer. In the current medical imaging scenario, elastograms for B-mode Ultrasound are restricted to well-equipped hospitals, making the modality unavailable for pocket ultrasound. To highlight the recent progress in elastogram synthesis, this article performs a critical review of generative adversarial network (GAN) methodology for elastogram generation from B-mode Ultrasound images. Along with a brief overview of cutting-edge medical image synthesis, the article highlights the contribution of the GAN framework in light of its impact and thoroughly analyzes the results to validate whether the existing challenges have been effectively addressed. Specifically, This article highlights that GANs can successfully generate accurate elastograms for deep-seated breast tumors (without having artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the results of the GAN framework are thoroughly analyzed by considering the quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally, essential unaddressed challenges that lie at the intersection of elastography and GANs are presented, and a few future directions are shared for the elastogram synthesis research.
Collapse
Affiliation(s)
- Mohammed Yusuf Ansari
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| | - Marwa Qaraqe
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Raffaella Righetti
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Erchin Serpedin
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Khalid Qaraqe
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
5
|
Abdusalomov AB, Nasimov R, Nasimova N, Muminov B, Whangbo TK. Evaluating Synthetic Medical Images Using Artificial Intelligence with the GAN Algorithm. SENSORS (BASEL, SWITZERLAND) 2023; 23:3440. [PMID: 37050503 PMCID: PMC10098960 DOI: 10.3390/s23073440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
In recent years, considerable work has been conducted on the development of synthetic medical images, but there are no satisfactory methods for evaluating their medical suitability. Existing methods mainly evaluate the quality of noise in the images, and the similarity of the images to the real images used to generate them. For this purpose, they use feature maps of images extracted in different ways or distribution of images set. Then, the proximity of synthetic images to the real set is evaluated using different distance metrics. However, it is not possible to determine whether only one synthetic image was generated repeatedly, or whether the synthetic set exactly repeats the training set. In addition, most evolution metrics take a lot of time to calculate. Taking these issues into account, we have proposed a method that can quantitatively and qualitatively evaluate synthetic images. This method is a combination of two methods, namely, FMD and CNN-based evaluation methods. The estimation methods were compared with the FID method, and it was found that the FMD method has a great advantage in terms of speed, while the CNN method has the ability to estimate more accurately. To evaluate the reliability of the methods, a dataset of different real images was checked.
Collapse
Affiliation(s)
| | - Rashid Nasimov
- Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
| | - Nigorakhon Nasimova
- Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
| | - Bahodir Muminov
- Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
| | - Taeg Keun Whangbo
- Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Gyeonggi-Do, Republic of Korea
| |
Collapse
|