1
|
Fiz F, Rossi N, Langella S, Conci S, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni GA, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, Ruzzenente A, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Cescon M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomics of Intrahepatic Cholangiocarcinoma and Peritumoral Tissue Predicts Postoperative Survival: Development of a CT-Based Clinical-Radiomic Model. Ann Surg Oncol 2024; 31:5604-5614. [PMID: 38797789 DOI: 10.1245/s10434-024-15457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND For many tumors, radiomics provided a relevant prognostic contribution. This study tested whether the computed tomography (CT)-based textural features of intrahepatic cholangiocarcinoma (ICC) and peritumoral tissue improve the prediction of survival after resection compared with the standard clinical indices. METHODS All consecutive patients affected by ICC who underwent hepatectomy at six high-volume centers (2009-2019) were considered for the study. The arterial and portal phases of CT performed fewer than 60 days before surgery were analyzed. A manual segmentation of the tumor was performed (Tumor-VOI). A 5-mm volume expansion then was applied to identify the peritumoral tissue (Margin-VOI). RESULTS The study enrolled 215 patients. After a median follow-up period of 28 months, the overall survival (OS) rate was 57.0%, and the progression-free survival (PFS) rate was 34.9% at 3 years. The clinical predictive model of OS had a C-index of 0.681. The addition of radiomic features led to a progressive improvement of performances (C-index of 0.71, including the portal Tumor-VOI, C-index of 0.752 including the portal Tumor- and Margin-VOI, C-index of 0.764, including all VOIs of the portal and arterial phases). The latter model combined clinical variables (CA19-9 and tumor pattern), tumor indices (density, homogeneity), margin data (kurtosis, compacity, shape), and GLRLM indices. The model had performance equivalent to that of the postoperative clinical model including the pathology data (C-index of 0.765). The same results were observed for PFS. CONCLUSIONS The radiomics of ICC and peritumoral tissue extracted from preoperative CT improves the prediction of survival. Both the portal and arterial phases should be considered. Radiomic and clinical data are complementary and achieve a preoperative estimation of prognosis equivalent to that achieved in the postoperative setting.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Giulia A Zamboni
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Borzi
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
- CHDS - Center for Health Data Science, Human Technopole, Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
| |
Collapse
|
2
|
Mirza-Aghazadeh-Attari M, Afyouni S, Zandieh G, Yazdani Nia I, Mohseni A, Borhani A, Madani SP, Shahbazian H, Ansari G, Kim A, Kamel IR. Utilization of Radiomics Features Extracted From Preoperative Medical Images to Detect Metastatic Lymph Nodes in Cholangiocarcinoma and Gallbladder Cancer Patients: A Systemic Review and Meta-analysis. J Comput Assist Tomogr 2024; 48:184-193. [PMID: 38013233 DOI: 10.1097/rct.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVES This study aimed to determine the methodological quality and evaluate the diagnostic performance of radiomics features in detecting lymph node metastasis on preoperative images in patients with cholangiocarcinoma and gallbladder cancer. METHODS Publications between January 2005 and October 2022 were considered for inclusion. Databases such as Pubmed/Medline, Scopus, Embase, and Google Scholar were searched for relevant studies. The quality of the methodology of the manuscripts was determined using the Radiomics Quality Score and Quality Assessment of Diagnostic Accuracy Studies 2. Pooled results with corresponding 95% confidence intervals (CIs) were calculated using the DerSimonian-Liard method (random-effect model). Forest plots were used to visually represent the diagnostic profile of radiomics signature in each of the data sets pertaining to each study. Fagan plot was used to determine clinical applicability. RESULTS Overall sensitivity was 0.748 (95% CI, 0.703-0.789). Overall specificity was 0.795 (95% CI, 0.742-0.839). The combined negative likelihood ratio was 0.299 (95% CI, 0.266-0.350), and the positive likelihood ratio was 3.545 (95% CI, 2.850-4.409). The combined odds ratio of the studies was 12.184 (95% CI, 8.477-17.514). The overall summary receiver operating characteristics area under the curve was 0.83 (95% CI, 0.80-0.86). Three studies applied nomograms to 8 data sets and achieved a higher pooled sensitivity and specificity (0.85 [0.80-0.89] and 0.85 [0.71-0.93], respectively). CONCLUSIONS The pooled analysis showed that predictive models fed with radiomics features achieve good sensitivity and specificity in detecting lymph node metastasis in computed tomography and magnetic resonance imaging images. Supplementation of the models with biological correlates increased sensitivity and specificity in all data sets.
Collapse
Affiliation(s)
| | - Shadi Afyouni
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Ghazal Zandieh
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Iman Yazdani Nia
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Alireza Mohseni
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Ali Borhani
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Seyedeh Panid Madani
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Haneyeh Shahbazian
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Golnoosh Ansari
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| | - Amy Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ihab R Kamel
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital
| |
Collapse
|
3
|
Lluís N, Asbun D, Wang JJ, Cao HST, Jimenez RE, Alseidi A, Asbun H. Lymph Node Dissection in Intrahepatic Cholangiocarcinoma: a Critical and Updated Review of the Literature. J Gastrointest Surg 2023; 27:3001-3013. [PMID: 37550590 DOI: 10.1007/s11605-023-05696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Lymphatic spread of intrahepatic cholangiocarcinoma (iCCA) is common and negatively impacts survival. However, the precise role of lymph node dissection (LND) in oncologic outcomes for patients with intrahepatic cholangiocarcinoma remains to be established. METHODS Updated evidence on the preoperative diagnosis and prognostic value of lymph node metastasis is reviewed, as well as the potential benefit of LND in patients with iCCA. RESULTS The ability to accurately determine nodal status for iCCA with current imaging modalities is equivocal. LND has prognostic value for both survival and disease recurrence. However, execution rates of LND are highly varied in the literature, ranging from 26.9 to 100%. At least 6 lymph nodes should be examined from nodal stations of the hepatoduodenal ligament and hepatic artery as well as based on the location of the primary tumor. Neoadjuvant therapies may be beneficial if lymph node metastases at diagnosis are suspected. Surgeons performing a minimally invasive approach should focus on increasing LND rates and harvesting ≥ 6 lymph nodes. Lymph node negativity is required in patients with iCCA being considered for liver transplantation under investigational protocols. CONCLUSION Despite an upward trend in the LND rate, the reality is that only 10% of patients with iCCA receive an adequate LND. This review underscores the importance of routinely increasing the rate of adequate LND in these patients in order to achieve accurate staging, appropriately select patients for adjuvant therapy, and improve the prognosis of clinical outcomes. While prospective data is lacking, the therapeutic impact of LND remains unknown.
Collapse
Affiliation(s)
- Núria Lluís
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA.
| | - Domenech Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Jaeyun Jane Wang
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Hop S Tran Cao
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ramon E Jimenez
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Adnan Alseidi
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Horacio Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| |
Collapse
|
4
|
Laino ME, Fiz F, Morandini P, Costa G, Maffia F, Giuffrida M, Pecorella I, Gionso M, Wheeler DR, Cambiaghi M, Saba L, Sollini M, Chiti A, Savevsky V, Torzilli G, Viganò L. A virtual biopsy of liver parenchyma to predict the outcome of liver resection. Updates Surg 2023; 75:1519-1531. [PMID: 37017906 DOI: 10.1007/s13304-023-01495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The preoperative risk assessment of liver resections (LR) is still an open issue. Liver parenchyma characteristics influence the outcome but cannot be adequately evaluated in the preoperative setting. The present study aims to elucidate the contribution of the radiomic analysis of non-tumoral parenchyma to the prediction of complications after elective LR. All consecutive patients undergoing LR between 2017 and 2021 having a preoperative computed tomography (CT) were included. Patients with associated biliary/colorectal resection were excluded. Radiomic features were extracted from a virtual biopsy of non-tumoral liver parenchyma (a 2 mL cylinder) outlined in the portal phase of preoperative CT. Data were internally validated. Overall, 378 patients were analyzed (245 males/133 females-median age 67 years-39 cirrhotics). Radiomics increased the performances of the preoperative clinical models for both liver dysfunction (at internal validaton, AUC = 0.727 vs. 0.678) and bile leak (AUC = 0.744 vs. 0.614). The final predictive model combined clinical and radiomic variables: for bile leak, segment 1 resection, exposure of Glissonean pedicles, HU-related indices, NGLDM_Contrast, GLRLM indices, and GLZLM_ZLNU; for liver dysfunction, cirrhosis, liver function tests, major hepatectomy, segment 1 resection, and NGLDM_Contrast. The combined clinical-radiomic model for bile leak based on preoperative data performed even better than the model including the intraoperative data (AUC = 0.629). The textural features extracted from a virtual biopsy of non-tumoral liver parenchyma improved the prediction of postoperative liver dysfunction and bile leak, implementing information given by standard clinical data. Radiomics should become part of the preoperative assessment of candidates to LR.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierandrea Morandini
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Fiore Maffia
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Mario Giuffrida
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Matteo Gionso
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Dakota Russell Wheeler
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Martina Cambiaghi
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Victor Savevsky
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125, Bergamo, Italy.
| |
Collapse
|
5
|
Viganò L, Ammirabile A, Zwanenburg A. Radiomics in liver surgery: defining the path toward clinical application. Updates Surg 2023; 75:1387-1390. [PMID: 37543527 DOI: 10.1007/s13304-023-01620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125, Bergamo, Italy.
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alexander Zwanenburg
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Huang JL, Sun Y, Wu ZH, Zhu HJ, Xia GJ, Zhu XS, Wu JH, Zhang KH. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms. J Cancer Res Clin Oncol 2023; 149:10161-10168. [PMID: 37268850 DOI: 10.1007/s00432-023-04935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The pre-operative non-invasive differential diagnosis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) mainly depends on imaging. However, the accuracy of conventional imaging and radiomics methods in differentiating between the two carcinomas is unsatisfactory. In this study, we aimed to establish a novel deep learning model based on computed tomography (CT) images to provide an effective and non-invasive pre-operative differential diagnosis method for HCC and ICC. MATERIALS AND METHODS We retrospectively investigated the CT images of 395 HCC patients and 99 ICC patients who were diagnosed based on pathological analysis. To differentiate between HCC and ICC we developed a deep learning model called CSAM-Net based on channel and spatial attention mechanisms. We compared the proposed CSAM-Net with conventional radiomic models such as conventional logistic regression, least absolute shrinkage and selection operator regression, support vector machine, and random forest models. RESULTS With respect to differentiating between HCC and ICC, the CSAM-Net model showed area under the receiver operating characteristic curve (AUC) values of 0.987 (accuracy = 0.939), 0.969 (accuracy = 0.914), and 0.959 (accuracy = 0.912) for the training, validation, and test sets, respectively, which were significantly higher than those of the conventional radiomics models (0.736-0.913 [accuracy = 0.735-0.912], 0.602-0.828 [accuracy = 0.647-0.818], and 0.638-0.845 [accuracy = 0.618-0.849], respectively. The decision curve analysis showed a high net benefit of the CSAM-Net model, which suggests potential efficacy in differentiating between HCC and ICC in the diagnosis of liver cancers. CONCLUSIONS The proposed CSAM-Net model based on channel and spatial attention mechanisms provides an effective and non-invasive tool for the differential diagnosis of HCC and ICC on CT images, and has potential applications in diagnosis of liver cancers.
Collapse
Affiliation(s)
- Ji-Lan Huang
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Heng Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Hui-Jun Zhu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Guo-Jin Xia
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xi-Shun Zhu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China
| | - Jian-Hua Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China.
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Nanchang, 330006, China.
| |
Collapse
|
7
|
Wang H, Xia Z, Xu Y, Sun J, Wu J. The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2023; 26:602-613. [PMID: 37488275 DOI: 10.1038/s41391-023-00704-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND In clinical practice, there are currently a variety of nomograms for predicting lymph node metastasis (LNM) of prostate cancer. At the same time, some scholars have introduced machine learning (ML) into the prediction of LNM of prostate cancer. However, the predictive value of nomograms and ML remains controversial. Based on this situation, this systematic review and meta-analysis was performed to explore the predictive value of various nomograms currently recommended and newly-developed ML models for LNM in prostate cancer patients. EVIDENCE ACQUISITION Cochrane, PubMed, Embase, and Web of Science were searched up to November 1, 2022. The risk of bias in the included studies was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST). The concordance index (C-index), sensitivity, and specificity were adopted to evaluate the predictive accuracy of the models. RESULTS Thirty-one studies (18,803 patients) were included. Seven kinds of nomograms currently recommended, dominated by Briganti nomogram or MSKCC nomogram, were covered in the included studies. For newly-developed ML models, the C-index for LNM prediction in the training set and validation set was 0.846 [95%CI (0.818, 0.873)] and 0.862 [95%CI (0.819-0.905)] respectively. Most ML models in the training set were based on Logistic Regression (LR), which had a sensitivity of 0.78 [95%CI (0.70, 0.85)] and a specificity of 0.85 [95%CI (0.77, 0.90)] in the training set, and a sensitivity of 0.81 [95%CI (0.67, 0.89)] and a specificity of 0.82 [95%CI (0.75, 0.88)] in the validation set. For the recommended nomograms, the C-index in the validation set was 0.745 [95%CI (0.701, 0.790)] for the Briganti nomogram and 0.714 [95%CI (0.662, 0.765)] for the MSKCC nomogram. CONCLUSION The predictive accuracy of ML is superior to existing clinically recommended nomograms, and appropriate updates can be conducted to existing nomograms according to special situations.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Zhongyou Xia
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yulai Xu
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Jing Sun
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Ji Wu
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China.
| |
Collapse
|
8
|
Fiz F, Rossi N, Langella S, Ruzzenente A, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni G, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, De Bellis M, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Ravaioli M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical-Radiomic Model. Cancers (Basel) 2023; 15:4204. [PMID: 37686480 PMCID: PMC10486795 DOI: 10.3390/cancers15174204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma (ICC). We investigated whether CT-based radiomics may improve the prediction of tumor characteristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI, i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and 139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68 at internal cross-validation. The addition of radiomic features extracted from the portal phase of CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72; +Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70; +Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75). The permutation tests confirmed that a combined clinical-radiomic model outperforms a purely clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the portal phase of preoperative CT improve the prediction of ICC grading and MVI.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Giulia Zamboni
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mariateresa Mirarchi
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Borzi
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
- CHDS—Center for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, 24125 Bergamo, Italy
| |
Collapse
|
9
|
Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219:985-995. [PMID: 35766531 PMCID: PMC10616929 DOI: 10.2214/ajr.22.27695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiomics is the process of extraction of high-throughput quantitative imaging features from medical images. These features represent noninvasive quantitative biomarkers that go beyond the traditional imaging features visible to the human eye. This article first reviews the steps of the radiomics pipeline, including image acquisition, ROI selection and image segmentation, image preprocessing, feature extraction, feature selection, and model development and application. Current evidence for the application of radiomics in abdominopelvic solid-organ cancers is then reviewed. Applications including diagnosis, subtype determination, treatment response assessment, and outcome prediction are explored within the context of hepatobiliary and pancreatic cancer, renal cell carcinoma, prostate cancer, gynecologic cancer, and adrenal masses. This literature review focuses on the strongest available evidence, including systematic reviews, meta-analyses, and large multicenter studies. Limitations of the available literature are highlighted, including marked heterogeneity in radiomics methodology, frequent use of small sample sizes with high risk of overfitting, and lack of prospective design, external validation, and standardized radiomics workflow. Thus, although studies have laid a foundation that supports continued investigation into radiomics models, stronger evidence is needed before clinical adoption.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Joint Department of Medical Imaging, Division of Abdominal Imaging, University Health Network, University of Toronto, ON, Canada
| | - Mohamed G Elbanan
- Department of Radiology, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT
| | | | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, Canada
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
| | - Bradley M Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Moawad
- Department of Diagnostic and Interventional Radiology, Mercy Catholic Medical Center, Darby, PA
| | - Serageldin Kamel
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khaled M Elsayes
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030
| |
Collapse
|
10
|
Functional Investigation of the Tumoural Heterogeneity of Intrahepatic Cholangiocarcinoma by In Vivo PET-CT Navigation: A Proof-of-Concept Study. J Clin Med 2022; 11:jcm11185451. [PMID: 36143097 PMCID: PMC9501620 DOI: 10.3390/jcm11185451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Intra-tumoural heterogeneity (IH) is a major determinant of resistance to therapy and outcomes but remains poorly translated into clinical practice. Intrahepatic cholangiocarcinoma (ICC) often presents as large heterogeneous masses at imaging. The present study proposed an innovative in vivo technique to functionally assess the IH of ICC. Preoperative 18F-FDG PET-CT and intraoperative ultrasonography were merged to perform the intraoperative navigation of functional tumour heterogeneity. The tumour areas with the highest and the lowest metabolism (SUV) at PET-CT were selected, identified during surgery, and sampled. Three consecutive patients underwent the procedure. The areas with the highest uptake at PET-CT had higher proliferation index (KI67) values and higher immune infiltration compared to areas with the lowest uptake. One of the patients showed a heterogeneous presence of FGFR2 translocation within the samples. Tumour heterogeneity at PET-CT may drive biopsy to sample the most informative ICC areas. Even more relevant, these preliminary data show the possibility of achieving a non-invasive evaluation of IH in ICC, paving the way for an imaging-based precision-medicine approach.
Collapse
|