1
|
Sabry AH, I. Dallal Bashi O, Nik Ali N, Mahmood Al Kubaisi Y. Lung disease recognition methods using audio-based analysis with machine learning. Heliyon 2024; 10:e26218. [PMID: 38420389 PMCID: PMC10900411 DOI: 10.1016/j.heliyon.2024.e26218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The use of computer-based automated approaches and improvements in lung sound recording techniques have made lung sound-based diagnostics even better and devoid of subjectivity errors. Using a computer to evaluate lung sound features more thoroughly with the use of analyzing changes in lung sound behavior, recording measurements, suppressing the presence of noise contaminations, and graphical representations are all made possible by computer-based lung sound analysis. This paper starts with a discussion of the need for this research area, providing an overview of the field and the motivations behind it. Following that, it details the survey methodology used in this work. It presents a discussion on the elements of sound-based lung disease classification using machine learning algorithms. This includes commonly prior considered datasets, feature extraction techniques, pre-processing methods, artifact removal methods, lung-heart sound separation, deep learning algorithms, and wavelet transform of lung audio signals. The study introduces studies that review lung screening including a summary table of these references and discusses the literature gaps in the existing studies. It is concluded that the use of sound-based machine learning in the classification of respiratory diseases has promising results. While we believe this material will prove valuable to physicians and researchers exploring sound-signal-based machine learning, large-scale investigations remain essential to solidify the findings and foster wider adoption within the medical community.
Collapse
Affiliation(s)
- Ahmad H. Sabry
- Department of Medical Instrumentation Engineering Techniques, Shatt Al-Arab University College, Basra, Iraq
| | - Omar I. Dallal Bashi
- Medical Technical Institute, Northern Technical University, 95G2+P34, Mosul, 41002, Iraq
| | - N.H. Nik Ali
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yasir Mahmood Al Kubaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai, 4545, United Arab Emirates
| |
Collapse
|
2
|
Ghrabli S, Elgendi M, Menon C. Identifying unique spectral fingerprints in cough sounds for diagnosing respiratory ailments. Sci Rep 2024; 14:593. [PMID: 38182601 PMCID: PMC10770161 DOI: 10.1038/s41598-023-50371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Coughing, a prevalent symptom of many illnesses, including COVID-19, has led researchers to explore the potential of cough sound signals for cost-effective disease diagnosis. Traditional diagnostic methods, which can be expensive and require specialized personnel, contrast with the more accessible smartphone analysis of coughs. Typically, coughs are classified as wet or dry based on their phase duration. However, the utilization of acoustic analysis for diagnostic purposes is not widespread. Our study examined cough sounds from 1183 COVID-19-positive patients and compared them with 341 non-COVID-19 cough samples, as well as analyzing distinctions between pneumonia and asthma-related coughs. After rigorous optimization across frequency ranges, specific frequency bands were found to correlate with each respiratory ailment. Statistical separability tests validated these findings, and machine learning algorithms, including linear discriminant analysis and k-nearest neighbors classifiers, were employed to confirm the presence of distinct frequency bands in the cough signal power spectrum associated with particular diseases. The identification of these acoustic signatures in cough sounds holds the potential to transform the classification and diagnosis of respiratory diseases, offering an affordable and widely accessible healthcare tool.
Collapse
Affiliation(s)
- Syrine Ghrabli
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008, Zurich, Switzerland
- Department of Physics, ETH Zurich, 8093, Zurich, Switzerland
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008, Zurich, Switzerland.
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008, Zurich, Switzerland.
| |
Collapse
|
3
|
Zarkogianni K, Dervakos E, Filandrianos G, Ganitidis T, Gkatzou V, Sakagianni A, Raghavendra R, Max Nikias CL, Stamou G, Nikita KS. The smarty4covid dataset and knowledge base as a framework for interpretable physiological audio data analysis. Sci Data 2023; 10:770. [PMID: 37932314 PMCID: PMC10628219 DOI: 10.1038/s41597-023-02646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Harnessing the power of Artificial Intelligence (AI) and m-health towards detecting new bio-markers indicative of the onset and progress of respiratory abnormalities/conditions has greatly attracted the scientific and research interest especially during COVID-19 pandemic. The smarty4covid dataset contains audio signals of cough (4,676), regular breathing (4,665), deep breathing (4,695) and voice (4,291) as recorded by means of mobile devices following a crowd-sourcing approach. Other self reported information is also included (e.g. COVID-19 virus tests), thus providing a comprehensive dataset for the development of COVID-19 risk detection models. The smarty4covid dataset is released in the form of a web-ontology language (OWL) knowledge base enabling data consolidation from other relevant datasets, complex queries and reasoning. It has been utilized towards the development of models able to: (i) extract clinically informative respiratory indicators from regular breathing records, and (ii) identify cough, breath and voice segments in crowd-sourced audio recordings. A new framework utilizing the smarty4covid OWL knowledge base towards generating counterfactual explanations in opaque AI-based COVID-19 risk detection models is proposed and validated.
Collapse
Affiliation(s)
- Konstantia Zarkogianni
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece.
- Maastricht University, Faculty of Science and Engineering, Department of Advanced Computing Sciences, Maastricht, 6200 MD, Netherlands.
| | - Edmund Dervakos
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
| | - George Filandrianos
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
| | - Theofanis Ganitidis
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
| | - Vasiliki Gkatzou
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
| | - Aikaterini Sakagianni
- Sismanoglion General Hospital, Department of Intensive Care Unit, Athens, 15126, Greece
| | - Raghu Raghavendra
- University of Southern California, Viterbi School of Engineering, Los Angeles, 90089, USA
| | - C L Max Nikias
- University of Southern California, Viterbi School of Engineering, Los Angeles, 90089, USA
| | - Giorgos Stamou
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
| | - Konstantina S Nikita
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, 157 80, Greece
- University of Southern California, Viterbi School of Engineering, Los Angeles, 90089, USA
| |
Collapse
|
4
|
Azeem M, Javaid S, Khalil RA, Fahim H, Althobaiti T, Alsharif N, Saeed N. Neural Networks for the Detection of COVID-19 and Other Diseases: Prospects and Challenges. Bioengineering (Basel) 2023; 10:850. [PMID: 37508877 PMCID: PMC10416184 DOI: 10.3390/bioengineering10070850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial neural networks (ANNs) ability to learn, correct errors, and transform a large amount of raw data into beneficial medical decisions for treatment and care has increased in popularity for enhanced patient safety and quality of care. Therefore, this paper reviews the critical role of ANNs in providing valuable insights for patients' healthcare decisions and efficient disease diagnosis. We study different types of ANNs in the existing literature that advance ANNs' adaptation for complex applications. Specifically, we investigate ANNs' advances for predicting viral, cancer, skin, and COVID-19 diseases. Furthermore, we propose a deep convolutional neural network (CNN) model called ConXNet, based on chest radiography images, to improve the detection accuracy of COVID-19 disease. ConXNet is trained and tested using a chest radiography image dataset obtained from Kaggle, achieving more than 97% accuracy and 98% precision, which is better than other existing state-of-the-art models, such as DeTraC, U-Net, COVID MTNet, and COVID-Net, having 93.1%, 94.10%, 84.76%, and 90% accuracy and 94%, 95%, 85%, and 92% precision, respectively. The results show that the ConXNet model performed significantly well for a relatively large dataset compared with the aforementioned models. Moreover, the ConXNet model reduces the time complexity by using dropout layers and batch normalization techniques. Finally, we highlight future research directions and challenges, such as the complexity of the algorithms, insufficient available data, privacy and security, and integration of biosensing with ANNs. These research directions require considerable attention for improving the scope of ANNs for medical diagnostic and treatment applications.
Collapse
Affiliation(s)
- Muhammad Azeem
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK;
| | - Shumaila Javaid
- Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; (S.J.); (H.F.)
| | - Ruhul Amin Khalil
- Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan;
- Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain 15551, United Arab Emirates
| | - Hamza Fahim
- Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; (S.J.); (H.F.)
| | - Turke Althobaiti
- Department of Computer Science, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia;
| | - Nasser Alsharif
- Department of Administrative and Financial Sciences, Ranyah University Collage, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nasir Saeed
- Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Sfayyih AH, Sulaiman N, Sabry AH. A review on lung disease recognition by acoustic signal analysis with deep learning networks. JOURNAL OF BIG DATA 2023; 10:101. [PMID: 37333945 PMCID: PMC10259357 DOI: 10.1186/s40537-023-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Recently, assistive explanations for difficulties in the health check area have been made viable thanks in considerable portion to technologies like deep learning and machine learning. Using auditory analysis and medical imaging, they also increase the predictive accuracy for prompt and early disease detection. Medical professionals are thankful for such technological support since it helps them manage further patients because of the shortage of skilled human resources. In addition to serious illnesses like lung cancer and respiratory diseases, the plurality of breathing difficulties is gradually rising and endangering society. Because early prediction and immediate treatment are crucial for respiratory disorders, chest X-rays and respiratory sound audio are proving to be quite helpful together. Compared to related review studies on lung disease classification/detection using deep learning algorithms, only two review studies based on signal analysis for lung disease diagnosis have been conducted in 2011 and 2018. This work provides a review of lung disease recognition with acoustic signal analysis with deep learning networks. We anticipate that physicians and researchers working with sound-signal-based machine learning will find this material beneficial.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ahmad H. Sabry
- Department of Computer Engineering, Al-Nahrain University, Al Jadriyah Bridge, 64074 Baghdad, Iraq
| |
Collapse
|
6
|
Sfayyih AH, Sabry AH, Jameel SM, Sulaiman N, Raafat SM, Humaidi AJ, Kubaiaisi YMA. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:diagnostics13101748. [PMID: 37238233 DOI: 10.3390/diagnostics13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Lung auscultation has long been used as a valuable medical tool to assess respiratory health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic. Lung auscultation is used to assess a patient's respiratory role. Modern technological progress has guided the growth of computer-based respiratory speech investigation, a valuable tool for detecting lung abnormalities and diseases. Several recent studies have reviewed this important area, but none are specific to lung sound-based analysis with deep-learning architectures from one side and the provided information was not sufficient for a good understanding of these techniques. This paper gives a complete review of prior deep-learning-based architecture lung sound analysis. Deep-learning-based respiratory sound analysis articles are found in different databases including the Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications were extracted and submitted for assessment. This paper discusses different trends in pathology/lung sound, the common features for classifying lung sounds, several considered datasets, classification methods, signal processing techniques, and some statistical information based on previous study findings. Finally, the assessment concludes with a discussion of potential future improvements and recommendations.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmad H Sabry
- Department of Computer Engineering, Al-Nahrain University Al Jadriyah Bridge, Baghdad 64074, Iraq
| | | | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Safanah Mudheher Raafat
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Amjad J Humaidi
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Yasir Mahmood Al Kubaiaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai 4545, United Arab Emirates
| |
Collapse
|
7
|
Aleixandre JG, Elgendi M, Menon C. The Use of Audio Signals for Detecting COVID-19: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8114. [PMID: 36365811 PMCID: PMC9653621 DOI: 10.3390/s22218114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A systematic review on the topic of automatic detection of COVID-19 using audio signals was performed. A total of 48 papers were obtained after screening 659 records identified in the PubMed, IEEE Xplore, Embase, and Google Scholar databases. The reviewed studies employ a mixture of open-access and self-collected datasets. Because COVID-19 has only recently been investigated, there is a limited amount of available data. Most of the data are crowdsourced, which motivated a detailed study of the various pre-processing techniques used by the reviewed studies. Although 13 of the 48 identified papers show promising results, several have been performed with small-scale datasets (<200). Among those papers, convolutional neural networks and support vector machine algorithms were the best-performing methods. The analysis of the extracted features showed that Mel-frequency cepstral coefficients and zero-crossing rate continue to be the most popular choices. Less common alternatives, such as non-linear features, have also been proven to be effective. The reported values for sensitivity range from 65.0% to 99.8% and those for accuracy from 59.0% to 99.8%.
Collapse
Affiliation(s)
- José Gómez Aleixandre
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
- Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
| |
Collapse
|