1
|
Behairi N, Samer A, Sahraoui L, Mataam DH, Trari R, Flissi B, Belguendouz H, Amir ZC, Touil-Boukoffa C. Neuroinflammation, neurodegeneration and alteration of spatial memory in BALB/c mice through ampicillin-induced gut dysbiosis; NOS2 and NFL involvement in a microbiota-gut-brain axis model. J Neuroimmunol 2024; 392:578374. [PMID: 38797060 DOI: 10.1016/j.jneuroim.2024.578374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
We aimed to investigate ampicillin (AMP) mechanisms in microbiota-gut-brain axis. We evaluated its effect on two gut and brain regions and behavioral performances. We administred AMP (1 g/l) to BALB/c mice for 21 days. Then, we analyzed body weigth change, stool consistency scoring, gut length, intestinal microbiota composition, nitric oxide synthase 2 (NOS2) expression and tissue integrity. We subsequently evaluated NOS2, GFAP, CD68 and NFL cerebral expression and spatial memory.Interestingly, our data showed gut microbiota disruption, NOS2 upregulation and tissue damage, associated to cerebral NOS2, GFAP, CD68 and NFL over-expression and behavioral alteration. Antiobiotic therapy should be prescribed with great caution.
Collapse
Affiliation(s)
- Nassima Behairi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Arezki Samer
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Issad-Abbes Oued-Smar, Algiers, Algeria
| | - Djehane Houria Mataam
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Ryad Trari
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Billel Flissi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Houda Belguendouz
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Zine-Charaf Amir
- Department of Anatomy and Pathological Cytology, University Hospital Center Mustapha Pacha, 1945 Pl. May 1st, Sidi M'Hamed, 16000 Algiers, Algeria
| | - Chafia Touil-Boukoffa
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria.
| |
Collapse
|
2
|
Zheng L, Boeren S, Liu C, Bakker W, Wang H, Rietjens IMCM, Saccenti E. Proteomics-based identification of biomarkers reflecting endogenous and exogenous exposure to the advanced glycation end product precursor methylglyoxal in SH-SY5Y human neuroblastoma cells. Int J Biol Macromol 2024; 272:132859. [PMID: 38838889 DOI: 10.1016/j.ijbiomac.2024.132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands; Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Haomiao Wang
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
3
|
Ruprecht NA, Singhal S, Schaefer K, Gill JS, Bansal B, Sens D, Singhal SK. Establishing a genomic radiation-age association for space exploration supplements lung disease differentiation. Front Public Health 2023; 11:1161124. [PMID: 37250098 PMCID: PMC10213902 DOI: 10.3389/fpubh.2023.1161124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose One possible way to quantify each individual's response or damage from ionizing radiation is to estimate their accelerated biological age following exposure. Since there is currently no definitive way to know if biological age estimations are accurate, we aim to establish a rad-age association using genomics as its foundation. Methods Two datasets were combined and used to empirically find the age cutoff between young and old patients. With age as both a categorical and continuous variable, two other datasets that included radiation exposure are used to test the interaction between radiation and age. The gene lists are oriented in preranked lists for both pathway and diseases analysis. Finally, these genes are used to evaluate another dataset on the clinical relevance in differentiating lung disease given ethnicity and sex using both pairwise t-tests and linear models. Results Using 12 well-known genes associated with aging, a threshold of 29-years-old was found to be the difference between young and old patients. The two interaction tests yielded 234 unique genes such that pathway analysis flagged IL-1 signaling and PRPP biosynthesis as significant with high cell proliferation diseases and carcinomas being a common trend. LAPTM4B was the only gene with significant interaction among lung disease, ethnicity, and sex, with fold change greater than two. Conclusion The results corroborate an initial association between radiation and age, given inflammation and metabolic pathways and multiple genes emphasizing mitochondrial function, oxidation, and histone modification. Being able to tie rad-age genes to lung disease supplements future work for risk assessment following radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Jappreet S. Gill
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Benu Bansal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
4
|
Anupama C, Shettar A, Ranganath SH, Srinivas SP. Experimental Oxidative Stress Breaks Down the Barrier Function of the Corneal Endothelium. J Ocul Pharmacol Ther 2023; 39:70-79. [PMID: 36346320 DOI: 10.1089/jop.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: The fluid pump and barrier functions of the corneal endothelium maintain stromal deturgescence required for corneal transparency. The effect of oxidative stress, a hallmark of Fuchs endothelial corneal dystrophy (FECD), on the endothelial barrier function has been investigated. Methods: The endothelium of porcine corneas ex vivo was exposed to (1) membrane permeable oxidants (H2O2, 100 μM, 1 h; tert-butyl-hydroperoxide, 100 μM, 1 h), or (2) ultraviolet A (UVA) with photosensitizers for 15 min, riboflavin (50 μM) or tryptophan (Trp) (100 μM). The effects on the apical junction complex were analyzed by (1) immunostaining the perijunctional actomyosin ring (PAMR) and ZO-1 and (2) assessment of paracellular flux of fluorescein isothiocyanate (FITC)-avidin across cultured endothelial cells grown on biotinylated-gelatin film. The extent of oxidative stress was quantified by changes in intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in addition to lipid peroxidation and release of lactate dehydrogenase (LDH). Results: Both methods of oxidative stress led to the disruption of PAMR and ZO-1 concurrent with changes in ROS levels, depolarization of MMP, increased lipid peroxidation, elevated LDH release, and increased permeability of FITC-avidin. The effects of direct oxidants were opposed by SB-203580 [p38 mitogen-activating protein (MAP) kinase inhibitor; 10 μM]. The damage by UVA+photosensitizers was blocked by extracellular catalase (10,000 U/mL). Conclusions: (1) Acute oxidative stress breaks down the barrier function through destruction of PAMR in a p38 MAP kinase-dependent manner. (2) UVA+photosensitizers elicit the breakdown of PAMR via type I reactions, involving H2O2 release. (3) Blocking the oxidative stress prevents loss of barrier function, which could be helpful in the therapeutics of FECD.
Collapse
Affiliation(s)
- C Anupama
- Department of Biotechnology, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India.,Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Abhijith Shettar
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
5
|
Simicic D, Cudalbu C, Pierzchala K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal Biochem 2022; 654:114795. [PMID: 35753389 DOI: 10.1016/j.ab.2022.114795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.
Collapse
Affiliation(s)
- D Simicic
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - K Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| |
Collapse
|
6
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
D'Ambra E, Santini T, Vitiello E, D'Uva S, Silenzi V, Morlando M, Bozzoni I. Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS. iScience 2021; 24:103504. [PMID: 34934923 DOI: 10.1016/j.isci.2021.103504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/12/2021] [Accepted: 11/21/2021] [Indexed: 12/17/2022] Open
Abstract
CircRNAs belong to a family of RNA molecules which are conserved in evolution, have tissue-specific expression, and are abundant in neuronal cells. Here, we define several features of circ-Hdgfrp3 and describe interesting alterations occurring in motor neurons (MNs) carrying ALS-associated FUS mutations. Through a highly sensitive in situ approach we describe that circ-Hdgfrp3 traffics along neurites, while upon oxidative stress it is retained in the perinuclear region. While in wild-type stressed MNs, circ-Hdgfrp3 localizes in stress granules (SGs), in MNs carrying mutant FUS, a higher proportion of circ-Hdgfrp3 was trapped into cytoplasmic aggregates. Upon stress removal, circ-Hdgfrp3 was easily freed from SGs whereas it was less efficiently released from FUS-aggregates. We found that the human circ-Hdgfrp3 counterpart was also similarly associated to mutant FUS-aggregates in stressed neuronal cells. Overall, the alteration of circ-Hdgfrp3 trafficking adds a further layer of complexity to the role of FUS-aggregates in ALS disease.
Collapse
Affiliation(s)
- Eleonora D'Ambra
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Erika Vitiello
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Human Technology@ Istituto Italiano di Tecnologia, Genova, Italy
| | - Sara D'Uva
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Valentina Silenzi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Perugia, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Center for Human Technology@ Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
8
|
Altered Expression of DAAM1 and PREP Induced by Cadmium Toxicity Is Counteracted by Melatonin in the Rat Testis. Genes (Basel) 2021; 12:genes12071016. [PMID: 34208970 PMCID: PMC8304460 DOI: 10.3390/genes12071016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3β-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.
Collapse
|
9
|
Yang P, Shao Z, Besley NA, Neal SE, Buehne KL, Park J, Karageozian H, Karageozian V, Ryde IT, Meyer JN, Jaffe GJ. Risuteganib Protects against Hydroquinone-induced Injury in Human RPE Cells. Invest Ophthalmol Vis Sci 2021; 61:35. [PMID: 32818234 PMCID: PMC7443126 DOI: 10.1167/iovs.61.10.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Cigarette smoking has been implicated in the pathogenesis of AMD. Integrin dysfunctions have been associated with AMD. Herein, we investigate the effect of risuteganib (RSG), an integrin regulator, on RPE cell injury induced by hydroquinone (HQ), an important oxidant in cigarette smoke. Methods Cultured human RPE cells were treated with HQ in the presence or absence of RSG. Cell death, mitochondrial respiration, reactive oxygen species production, and mitochondrial membrane potential were measured by flow cytometry, XFe24 analyzer, and fluorescence plate reader, respectively. Whole transcriptome analysis and gene expression were analyzed by Illumina RNA sequencing and quantitative PCR, respectively. F-actin aggregation was visualized with phalloidin. Levels of heme oxygenase-1, P38, and heat shock protein 27 proteins were measured by Western blot. Results HQ induced necrosis and apoptosis, decreased mitochondrial bioenergetics, increased reactive oxygen species levels, decreased mitochondrial membrane potential, increased F-actin aggregates, and induced phosphorylation of P38 and heat shock protein 27. HQ, but not RSG alone, induced substantial transcriptome changes that were regulated by RSG cotreatment. RSG cotreatment significantly protected against HQ-induced necrosis and apoptosis, prevented HQ-reduced mitochondrial bioenergetics, decreased HQ-induced reactive oxygen species production, improved HQ-disrupted mitochondrial membrane potential, reduced F-actin aggregates, decreased phosphorylation of P38 and heat shock protein 27, and further upregulated HQ-induced heme oxygenase-1 protein levels. Conclusions RSG has no detectable adverse effects on healthy RPE cells, whereas RSG cotreatment protects against HQ-induced injury, mitochondrial dysfunction, and actin reorganization, suggesting a potential role for RSG therapy to treat retinal diseases such as AMD.
Collapse
Affiliation(s)
- Ping Yang
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Zixuan Shao
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Nicholas A Besley
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Samantha E Neal
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Kristen L Buehne
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - John Park
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Hampar Karageozian
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Vicken Karageozian
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| |
Collapse
|
10
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. A Soft Mechanical Phenotype of SH-SY5Y Neuroblastoma and Primary Human Neurons Is Resilient to Oligomeric Aβ(1-42) Injury. ACS Chem Neurosci 2020; 11:840-850. [PMID: 32058688 DOI: 10.1021/acschemneuro.9b00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aggregated amyloid beta (Aβ) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aβ can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aβ toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aβ(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aβ promotes F-actin polymerization and cell stiffening, while mature Aβ fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aβ as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aβ exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
11
|
Hamon MP, Ahmed EK, Baraibar MA, Friguet B. Proteome Oxidative Modifications and Impairment of Specific Metabolic Pathways During Cellular Senescence and Aging. Proteomics 2019; 20:e1800421. [PMID: 31507063 DOI: 10.1002/pmic.201800421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Accumulation of oxidatively modified proteins is a hallmark of organismal aging in vivo and of cellular replicative senescence in vitro. Failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins that is believed to participate to the age-related decline in cellular function. In this context, quantitative proteomics approaches, including 2-D gel electrophoresis (2-DE)-based methods, represent powerful tools for monitoring the extent of protein oxidative modifications at the proteome level and for identifying the targeted proteins, also referred as to the "oxi-proteome." Previous studies have identified proteins targeted by oxidative modifications during replicative senescence of human WI-38 fibroblasts and myoblasts and have been shown to represent a restricted set within the total cellular proteome that fall in key functional categories, such as energy metabolism, protein quality control, and cellular morphology. To provide mechanistic support into the role of oxidized proteins in the development of the senescent phenotype, untargeted metabolomic profiling is also performed for young and senescent myoblasts and fibroblasts. Metabolomic profiling is indicative of energy metabolism impairment in both senescent myoblasts and fibroblasts, suggesting a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts and fibroblasts.
Collapse
Affiliation(s)
- Marie-Paule Hamon
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, F-75005, Paris, France
| | - Emad K Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, F-75005, Paris, France
| |
Collapse
|