1
|
Maccarana M, Li B, Li H, Fang J, Yu M, Li JP. Inhibitors of dermatan sulfate epimerase 1 decreased accumulation of glycosaminoglycans in mucopolysaccharidosis type I fibroblasts. Glycobiology 2024; 34:cwae025. [PMID: 38760939 PMCID: PMC11101759 DOI: 10.1093/glycob/cwae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 05/20/2024] Open
Abstract
Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 μM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, 75123, Uppsala, Sweden
| | - Binjie Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, No. 15 North Third Ring Road East, Chaoyang District, Beijing, 100029, P. R. China
| | - Honglian Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, 75123, Uppsala, Sweden
| | - Jianping Fang
- GlycoNovo Technologies Co. Ltd., Room 202, Building 83-84, 887 Zuchongzhi Road, Pilot Free Trade Zone, Shanghai 201203, China
| | - Mingjia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No 8 and 9 Yards, Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Jin-ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, 75123, Uppsala, Sweden
- SciLifeLab, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
| |
Collapse
|
2
|
Malinowska M, Nowicka W, Kloska A, Węgrzyn G, Jakóbkiewicz-Banecka J. Efficacy of a Combination Therapy with Laronidase and Genistein in Treating Mucopolysaccharidosis Type I in a Mouse Model. Int J Mol Sci 2024; 25:2371. [PMID: 38397051 PMCID: PMC10889377 DOI: 10.3390/ijms25042371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.
Collapse
Affiliation(s)
- Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | | | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
3
|
Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int J Mol Sci 2022; 24:ijms24010477. [PMID: 36613919 PMCID: PMC9820209 DOI: 10.3390/ijms24010477] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
Collapse
|
4
|
Maccarana M, Tykesson E, Pera EM, Gouignard N, Fang J, Malmström A, Ghiselli G, Li JP. Inhibition of iduronic acid biosynthesis by ebselen reduces glycosaminoglycan accumulation in mucopolysaccharidosis type I fibroblasts. Glycobiology 2021; 31:1319-1329. [PMID: 34192316 PMCID: PMC8600295 DOI: 10.1093/glycob/cwab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I) is a rare lysosomal storage disorder caused by deficiency of the enzyme alpha-L-iduronidase, which removes iduronic acid in both chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) and thereby contributes to the catabolism of glycosaminoglycans (GAGs). To ameliorate this genetic defect, the patients are currently treated by enzyme replacement and bone marrow transplantation, which have a number of drawbacks. This study was designed to develop an alternative treatment by inhibition of iduronic acid formation. By screening the Prestwick drug library, we identified ebselen as a potent inhibitor of enzymes that produce iduronic acid in CS/DS and HS. Ebselen efficiently inhibited iduronic acid formation during CS/DS synthesis in cultured fibroblasts. Treatment of MPS-I fibroblasts with ebselen not only reduced accumulation of CS/DS but also promoted GAG degradation. In early Xenopus embryos, this drug phenocopied the effect of downregulation of DS-epimerase 1, the main enzyme responsible for iduronic production in CS/DS, suggesting that ebselen inhibits iduronic acid production in vivo. However, ebselen failed to ameliorate the CS/DS and GAG burden in MPS-I mice. Nevertheless, the results propose a potential of iduronic acid substrate reduction therapy for MPS-I patients.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Medical Biochemistry and Microbiology, BMC B11, Uppsala University, Husargatan 3 Box 582 751 23 Uppsala, Sweden
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Edgar M Pera
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Nadège Gouignard
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Jianping Fang
- GlycoNovo Technologies Co., Ltd., Shanghai 201203, China
| | - Anders Malmström
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Giancarlo Ghiselli
- Glyconova Srl, Parco Scientifico Silvano Fumero, Bioindustry Park Silvano Fumero S.p.A Via Ribes, 5 - 10010 - Colleretto Giacosa (TO), Italy
| | - Jin-ping Li
- Department of Medical Biochemistry and Microbiology, BMC B11, Uppsala University, Husargatan 3 Box 582 751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
6
|
Hurdles in treating Hurler disease: potential routes to achieve a "real" cure. Blood Adv 2021; 4:2837-2849. [PMID: 32574368 DOI: 10.1182/bloodadvances.2020001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace. To design better therapies, we need to understand why and where current therapies fail. In this review, we discuss important aspects of the underlying disease and the disease progression. We note that the majority of progressive symptoms that occur in "hard-to-treat" tissues are actually tissues that are difficult to reach, such as avascular connective tissue or tissues isolated from the circulation by a specific barrier (eg, blood-brain barrier, blood-retina barrier). Although easily reached tissues are effectively cured by HCT, disease progression is observed in these "hard-to-reach" tissues. We used these insights to critically appraise ongoing experimental endeavors with regard to their potential to overcome the encountered hurdles and improve long-term clinical outcomes in MPS patients treated with HCT.
Collapse
|
7
|
Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, McLoon LK, Cureoglu S, Schachern P, McIvor RS. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021; 11:189. [PMID: 33572941 PMCID: PMC7911293 DOI: 10.3390/biom11020189] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease, caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA). IDUA catalyzes the degradation of the glycosaminoglycans dermatan and heparan sulfate (DS and HS, respectively). Lack of the enzyme leads to pathologic accumulation of undegraded HS and DS with subsequent disease manifestations in multiple organs. The disease can be divided into severe (Hurler syndrome) and attenuated (Hurler-Scheie, Scheie) forms. Currently approved treatments consist of enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). Patients with attenuated disease are often treated with ERT alone, while the recommended therapy for patients with Hurler syndrome consists of HSCT. While these treatments significantly improve disease manifestations and prolong life, a considerable burden of disease remains. Notably, treatment can partially prevent, but not significantly improve, clinical manifestations, necessitating early diagnosis of disease and commencement of treatment. This review discusses these standard therapies and their impact on common disease manifestations in patients with MPS I. Where relevant, results of animal models of MPS I will be included. Finally, we highlight alternative and emerging treatments for the most common disease manifestations.
Collapse
Affiliation(s)
| | | | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Lynda E. Polgreen
- The Lundquist Institute at Harbor, UCLA Medical Center, Torrance, CA 90502, USA;
| | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sebahattin Cureoglu
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - Patricia Schachern
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - R. Scott McIvor
- Immusoft Corp, Minneapolis, MN 55413, USA;
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
10
|
Pierzynowska K, Gaffke L, Jankowska E, Rintz E, Witkowska J, Wieczerzak E, Podlacha M, Węgrzyn G. Proteasome Composition and Activity Changes in Cultured Fibroblasts Derived From Mucopolysaccharidoses Patients and Their Modulation by Genistein. Front Cell Dev Biol 2020; 8:540726. [PMID: 33195185 PMCID: PMC7606483 DOI: 10.3389/fcell.2020.540726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, we have asked whether proteasome composition and function are affected in cells derived from patients suffering from all types of mucopolysaccharidosis (MPS), an inherited metabolic disease caused by accumulation of undegraded glycosaminoglycans (GAGs). Moreover, we have tested if genistein, a small molecule proposed previously as a potential therapeutic agent in MPS, can modulate proteasomes, which might shed a new light on the molecular mechanisms of action of this isoflavone as a potential drug for macromolecule storage diseases. Significant changes in expression of various proteasome-linked genes have been detected during transcriptomic (RNA-seq) analyses in vast majority of MPS types. These results were corroborated by demonstration of increased proteasomal activities in MPS cells. However, GAGs were not able to stimulate the 26S proteasome in vitro, suggesting that the observed activation in cells is indirect rather than arising from direct GAG-proteasome interactions. Genistein significantly reduced proteasomal activities in fibroblasts derived from patients suffering from all MPS types, while its effects on in vitro 26S proteasome activity were negligible. Unexpectedly, levels of many proteasomal subunits were increased in genistein-treated MPS cells. On the other hand, this ostensible discrepancy between results of experiments designed for estimation of effects of genistein on proteasome activities and abundance of proteasomal subunits can be explained by demonstration that in the presence of this isoflavone, levels of ubiquitinated proteins were decreased. The genistein-mediated reduction of proteasomal activities might have beneficial effects in cells of MPS patients due to potential increasing of residual activities of defective lysosomal enzymes which would otherwise be subjected to efficient ubiquitination and proteasomal degradation as misfolded proteins. These results indicate another activity of genistein (apart from previously demonstrated reduction of GAG synthesis efficiency, stimulation of lysosomal biogenesis, and activation of the autophagy process) which can be beneficial in the use of this small molecule in treatment of MPS.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| |
Collapse
|
11
|
Le SQ, Nestrasil I, Kan SH, Egeland M, Cooper JD, Elashoff D, Guo R, Tolar J, Yee JK, Dickson PI. Myelin and Lipid Composition of the Corpus Callosum in Mucopolysaccharidosis Type I Mice. Lipids 2020; 55:627-637. [PMID: 32537944 DOI: 10.1002/lipd.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease with progressive central nervous system involvement. This study examined the lipid, cholesterol, and myelin basic protein composition of white matter in the corpus callosum of MPS I mice. We studied 50 week-old, male MPS I mice and littermate, heterozygote controls (n = 12 per group). Male MPS I mice showed lower phosphatidylcholine and ether-linked phosphatidylcholine quantities than controls (p < 0.05). Twenty-two phospholipid or ceramide species showed significant differences in percent of total. Regarding specific lipid species, MPS I mice exhibited lower quantities of sphingomyelin 18:1, phosphatidylserine 38:3, and hexosylceramide d18:1(22:1) mH2 O than controls. Principal components analyses of polar, ceramide, and hexosylceramide lipids, respectively, showed some separation of MPS I and control mice. We found no significant differences in myelin gene expression, myelin basic protein, or total cholesterol in the MPS I mice versus heterozygous controls. There was a trend toward lower proteolipid protein-1 levels in MPS I mice (p = 0.06). MPS I mice show subtle changes in white matter composition, with an unknown impact on pathogenesis in this model.
Collapse
Affiliation(s)
- Steven Q Le
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA.,Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA
| | - Igor Nestrasil
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Shih-Hsin Kan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA.,CHOC Children's Research Institute, 2450 Riverside Avenue, Orange, CA, 55454, USA
| | - Martin Egeland
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Jonathan D Cooper
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA.,Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA
| | - David Elashoff
- Department of Medicine Statistics Core, University of California, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Rong Guo
- Department of Medicine Statistics Core, University of California, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.,Stem Cell Institute, University of Minnesota, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jennifer K Yee
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Patricia I Dickson
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA.,Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA
| |
Collapse
|
12
|
Poletto E, Baldo G, Gomez-Ospina N. Genome Editing for Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E500. [PMID: 31941077 PMCID: PMC7014411 DOI: 10.3390/ijms21020500] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | |
Collapse
|
13
|
Abstract
Mucopolysaccharidoses (MPSs) are caused by deficiencies of specific lysosomal enzymes that affect the degradation of mucopolysaccharides or glycosaminoglycans (GAGs). Enzyme replacement therapies are available for an increasing number of MPSs since more than 15 years. Together with hematopoietic stem cell transplantation, these enzyme therapies are currently the gold standard of causal treatment in MPS. Both treatments can improve symptoms and prognosis, but they do not cure these severe conditions. The limitations of intravenous enzyme replacement and cell therapy can be summarized as the development of immune reactions against the therapeutic molecules/cells and failure to restore enduring and sufficient drug exposures in all relevant tissues. Thus innovative approaches include small molecules and encapsulated cells that do not induce immune reactions, gene therapy approaches that aim for sustained enzyme expression, and new enzymes that are able to penetrate barriers to drug distribution like the blood-brain barrier. This chapter provides an update on the state of development of these new therapies and highlights current challenges.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
14
|
Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics (Basel) 2019; 9:diagnostics9040226. [PMID: 31861164 PMCID: PMC6963688 DOI: 10.3390/diagnostics9040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Current therapies for the mucopolysaccharidoses (MPS) do not effectively address skeletal and neurological manifestations. Pentosan polysulfate (PPS) is an alternative treatment strategy that has been shown to improve bone architecture, mobility, and neuroinflammation in MPS animals. The aims of this study were to a) primarily establish the safety of weekly PPS injections in attenuated MPS II, b) assess the efficacy of treatment on MPS pathology, and c) define appropriate clinical endpoints and biomarkers for future clinical trials. Subcutaneous injections were administered to three male Japanese patients for 12 weeks. Enzyme replacement therapy was continued in two of the patients while they received PPS and halted for two months in one patient before starting PPS. During treatment, one patient experienced an elevation of alanine transaminase, and another patient experienced convulsions; however, these incidences were non-cumulative and unrelated to PPS administration, respectively. Overall, the drug was well-tolerated in all patients, and no serious drug-related adverse events were noted. Generally, PPS treatment led to an increase in several parameters of shoulder range of motion and decrease of the inflammatory cytokines, MIF and TNF-α, which are potential clinical endpoints and biomarkers, respectively. Changes in urine and serum glycosaminoglycans were inconclusive. Overall, this study demonstrates the safety of using PPS in adults with MPS II and suggests the efficacy of PPS on MPS pathology with the identification of potential clinical endpoints and biomarkers.
Collapse
|
15
|
Mohamed S, He QQ, Singh AA, Ferro V. Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approaches to its diagnosis and treatment. Adv Carbohydr Chem Biochem 2019; 77:71-117. [PMID: 33004112 DOI: 10.1016/bs.accb.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disease caused by mutations of the gene encoding the lysosomal enzyme iduronate-2-sulfatase (IDS), the role of which is to hydrolytically remove O-linked sulfates from the two glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). HS and DS are linear, heterogeneous polysaccharides composed of repeating disaccharide subunits of l-iduronic acid (IdoA) or d-glucuronic acid, (1→4)-linked to d-glucosamine (for HS), or (1→3)-linked to 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) (for DS). In healthy cells, IDS cleaves the sulfo group found at the C-2 position of terminal non-reducing end IdoA residues in HS and DS. The loss of IDS enzyme activity leads to progressive lysosomal storage of HS and DS in tissues and organs such as the brain, liver, spleen, heart, bone, joints and airways. Consequently, this leads to the phenotypic features characteristic of the disease. This review provides an overview of the disease profile and clinical manifestation, with a particular focus on the biochemical basis of the disease and chemical approaches to the development of new diagnostics, as well as discussing current treatment options and emerging new therapies.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Arti A Singh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Poswar FDO, Vairo F, Burin M, Michelin-Tirelli K, Brusius-Facchin AC, Kubaski F, Souza CFMD, Baldo G, Giugliani R. Lysosomal diseases: Overview on current diagnosis and treatment. Genet Mol Biol 2019; 42:165-177. [PMID: 31067291 PMCID: PMC6687355 DOI: 10.1590/1678-4685-gmb-2018-0159] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Lysosomal diseases (LDs), also known as lysosomal storage diseases (LSDs), are a heterogeneous group of conditions caused by defects in lysosomal function. LDs may result from deficiency of lysosomal hydrolases, membrane-associated transporters or other non-enzymatic proteins. Interest in the LD field is growing each year, as more conditions are, or will soon be treatable. In this article, we review the diagnosis of LDs, from clinical suspicion and screening tests to the identification of enzyme or protein deficiencies and molecular genetic diagnosis. We also cover the treatment approaches that are currently available or in development, including hematopoietic stem cell transplantation, enzyme replacement therapy, small molecules, and gene therapy.
Collapse
Affiliation(s)
- Fabiano de Oliveira Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Maira Burin
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Francyne Kubaski
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Guilherme Baldo
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Physiology and Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Substrate reduction therapy for inborn errors of metabolism. Emerg Top Life Sci 2019; 3:63-73. [PMID: 33523197 PMCID: PMC7289018 DOI: 10.1042/etls20180058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Inborn errors of metabolism (IEM) represent a growing group of monogenic disorders each associated with inherited defects in a metabolic enzyme or regulatory protein, leading to biochemical abnormalities arising from a metabolic block. Despite the well-established genetic linkage, pathophysiology and clinical manifestations for many IEMs, there remains a lack of transformative therapy. The available treatment and management options for a few IEMs are often ineffective or expensive, incurring a significant burden to individual, family, and society. The lack of IEM therapies, in large part, relates to the conceptual challenge that IEMs are loss-of-function defects arising from the defective enzyme, rendering pharmacologic rescue difficult. An emerging approach that holds promise and is the subject of a flurry of pre-/clinical applications, is substrate reduction therapy (SRT). SRT addresses a common IEM phenotype associated with toxic accumulation of substrate from the defective enzyme, by inhibiting the formation of the substrate instead of directly repairing the defective enzyme. This minireview will summarize recent highlights towards the development of emerging SRT, with focussed attention towards repurposing of currently approved drugs, approaches to validate novel targets and screen for hit molecules, as well as emerging advances in gene silencing as a therapeutic modality.
Collapse
|