1
|
Gupta A, Ma H, Ramanathan A, Zerze GH. A Deep Learning-Driven Sampling Technique to Explore the Phase Space of an RNA Stem-Loop. J Chem Theory Comput 2024; 20:9178-9189. [PMID: 39374435 DOI: 10.1021/acs.jctc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The folding and unfolding of RNA stem-loops are critical biological processes; however, their computational studies are often hampered by the ruggedness of their folding landscape, necessitating long simulation times at the atomistic scale. Here, we adapted DeepDriveMD (DDMD), an advanced deep learning-driven sampling technique originally developed for protein folding, to address the challenges of RNA stem-loop folding. Although tempering- and order parameter-based techniques are commonly used for similar rare-event problems, the computational costs or the need for a priori knowledge about the system often present a challenge in their effective use. DDMD overcomes these challenges by adaptively learning from an ensemble of running MD simulations using generic contact maps as the raw input. DeepDriveMD enables on-the-fly learning of a low-dimensional latent representation and guides the simulation toward the undersampled regions while optimizing the resources to explore the relevant parts of the phase space. We showed that DDMD estimates the free energy landscape of the RNA stem-loop reasonably well at room temperature. Our simulation framework runs at a constant temperature without external biasing potential, hence preserving the information on transition rates, with a computational cost much lower than that of the simulations performed with external biasing potentials. We also introduced a reweighting strategy for obtaining unbiased free energy surfaces and presented a qualitative analysis of the latent space. This analysis showed that the latent space captures the relevant slow degrees of freedom for the RNA folding problem of interest. Finally, throughout the manuscript, we outlined how different parameters are selected and optimized to adapt DDMD for this system. We believe this compendium of decision-making processes will help new users adapt this technique for the rare-event sampling problems of their interest.
Collapse
Affiliation(s)
- Ayush Gupta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Heng Ma
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gül H Zerze
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
3
|
Coskuner-Weber O. Structures prediction and replica exchange molecular dynamics simulations of α-synuclein: A case study for intrinsically disordered proteins. Int J Biol Macromol 2024; 276:133813. [PMID: 38996889 DOI: 10.1016/j.ijbiomac.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In recent years, a variety of three-dimensional structure prediction tools, including AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold, have been employed in the investigation of intrinsically disordered proteins. However, a comprehensive validation of these tools specifically for intrinsically disordered proteins has yet to be conducted. In this study, we utilize AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold to predict the structure of a model intrinsically disordered α-synuclein protein. Additionally, extensive replica exchange molecular dynamics simulations of the intrinsically disordered protein are conducted. The resulting structures from both structure prediction tools and replica exchange molecular dynamics simulations are analyzed for radius of gyration, secondary and tertiary structure properties, as well as Cα and Hα chemical shift values. A comparison of the obtained results with experimental data reveals that replica exchange molecular dynamics simulations provide results in excellent agreement with experimental observations. However, none of the structure prediction tools utilized in this study can fully capture the structural characteristics of the model intrinsically disordered protein. This study shows that a cluster of ensembles are required for intrinsically disordered proteins. Artificial-intelligence based structure prediction tools such as AlphaFold3 and C-I-TASSER could benefit from stochastic sampling or Monte Carlo simulations for generating an ensemble of structures for intrinsically disordered proteins.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
4
|
Wang J, Miao Y. Ligand Gaussian Accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides. J Chem Theory Comput 2024; 20:5829-5841. [PMID: 39002136 DOI: 10.1021/acs.jctc.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules and flexible peptides using conventional molecular dynamics (cMD), due to limited simulation time scales. Based on our previously developed ligand Gaussian accelerated molecular dynamics (LiGaMD) method, we present a new approach, termed "LiGaMD3″, in which we introduce triple boosts into three individual energy terms that play important roles in small-molecule/peptide dissociation, rebinding, and system conformational changes to improve the sampling efficiency of small-molecule/peptide interactions with target proteins. To validate the performance of LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI and P53) were chosen as the model systems. LiGaMD3 could efficiently capture repetitive small-molecule/peptide dissociation and binding events within 2 μs simulations. The predicted binding kinetic constant rates and free energies from LiGaMD3 were in agreement with the available experimental values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient approach to capture dissociation and binding of both small-molecule ligands and flexible peptides, allowing for accurate prediction of their binding thermodynamics and kinetics.
Collapse
Affiliation(s)
- Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Sepali C, Gómez S, Grifoni E, Giovannini T, Cappelli C. Computational Spectroscopy of Aqueous Solutions: The Underlying Role of Conformational Sampling. J Phys Chem B 2024; 128:5083-5091. [PMID: 38733374 DOI: 10.1021/acs.jpcb.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Fully atomistic multiscale polarizable quantum mechanics (QM)/molecular mechanics (MM) approaches, combined with techniques to sample the solute-solvent phase space, constitute the most accurate method to compute spectral signals in aqueous solution. Conventional sampling strategies, such as classical molecular dynamics (MD), may encounter drawbacks when the conformational space is particularly complex, and transition barriers between conformers are high. This can lead to inaccurate sampling, which can potentially impact the accuracy of spectral calculations. For this reason, in this work, we compare classical MD with enhanced sampling techniques, i.e., replica exchange MD and metadynamics. In particular, we show how the different sampling techniques affect computed UV, electronic circular dichroism, nuclear magnetic resonance shielding, and optical rotatory dispersion of N-acetylproline-amide in aqueous solution. Such a system is a model peptide characterized by complex conformational variability. Calculated values suggest that spectral properties are influenced by solute conformers, relative population, and solvent effects; therefore, particular care needs to be paid for when choosing the sampling technique.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuele Grifoni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
6
|
Wang J, Miao Y. Ligand Gaussian accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592668. [PMID: 38766067 PMCID: PMC11100592 DOI: 10.1101/2024.05.06.592668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules and flexible peptides using conventional Molecular Dynamics (cMD), due to limited simulation timescales. Based on our previously developed Ligand Gaussian accelerated Molecular Dynamics (LiGaMD) method, we present a new approach, termed "LiGaMD3", in which we introduce triple boosts into three individual energy terms that play important roles in small-molecule/peptide dissociation, rebinding and system conformational changes to improve the sampling efficiency of small-molecule/peptide interactions with target proteins. To validate the performance of LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI and P53) were chosen as model systems. LiGaMD3 could efficiently capture repetitive small-molecule/peptide dissociation and binding events within 2 microsecond simulations. The predicted binding kinetic constant rates and free energies from LiGaMD3 agreed with available experimental values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient approach to capture dissociation and binding of both small-molecule ligand and flexible peptides, allowing for accurate prediction of their binding thermodynamics and kinetics.
Collapse
Affiliation(s)
- Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina, USA 27599
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
7
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
8
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
9
|
Park H, Wragg DS, Koposov AY. Replica exchange molecular dynamics for Li-intercalation in graphite: a new solution for an old problem. Chem Sci 2024; 15:2745-2754. [PMID: 38404401 PMCID: PMC10882458 DOI: 10.1039/d3sc06107h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Li intercalation and graphite stacking have been extensively studied because of the importance of graphite in commercial Li-ion batteries. Despite this attention, there are still questions about the atomistic structures of the intermediate states that exist during lithiation, especially when phase dynamics cause a disordered Li distribution. The Li migration event (diffusion coefficient of 10-5 nm2 ns-1) makes it difficult to explore the various Li-intercalation configurations in conventional molecular dynamics (MD) simulations with an affordable simulation timescale. To overcome these limitations, we conducted a comprehensive study using replica-exchange molecular dynamics (REMD) in combination with the ReaxFF force field. This approach allowed us to study the behavior of Li-intercalated graphite from any starting arrangement of Li at any value of x in LixC6. Our focus was on analyzing the energetic favorability differences between the relaxed structures. We rationalized the trends in formation energy on the basis of observed structural features, identifying three main structural features that cooperatively control Li rearrangement in graphite: Li distribution, graphite stacking mode and gallery height (graphene layer spacing). We also observed a tendency for clustering of Li, which could lead to dynamic local structures that approximate the staging models used to explain intercalation into graphite.
Collapse
Affiliation(s)
- Heesoo Park
- Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033, Blindern Oslo 0371 Norway
| | - David S Wragg
- Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033, Blindern Oslo 0371 Norway
- Department of Battery Technology, Institute for Energy Technology (IFE) Instituttveien 18, Kjeller 2027 Norway
| | - Alexey Y Koposov
- Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033, Blindern Oslo 0371 Norway
- Department of Battery Technology, Institute for Energy Technology (IFE) Instituttveien 18, Kjeller 2027 Norway
| |
Collapse
|
10
|
Li R, Zhou C, Singh A, Pei Y, Henkelman G, Li L. Local-environment-guided selection of atomic structures for the development of machine-learning potentials. J Chem Phys 2024; 160:074109. [PMID: 38380745 DOI: 10.1063/5.0187892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Machine learning potentials (MLPs) have attracted significant attention in computational chemistry and materials science due to their high accuracy and computational efficiency. The proper selection of atomic structures is crucial for developing reliable MLPs. Insufficient or redundant atomic structures can impede the training process and potentially result in a poor quality MLP. Here, we propose a local-environment-guided screening algorithm for efficient dataset selection in MLP development. The algorithm utilizes a local environment bank to store unique local environments of atoms. The dissimilarity between a particular local environment and those stored in the bank is evaluated using the Euclidean distance. A new structure is selected only if its local environment is significantly different from those already present in the bank. Consequently, the bank is then updated with all the new local environments found in the selected structure. To demonstrate the effectiveness of our algorithm, we applied it to select structures for a Ge system and a Pd13H2 particle system. The algorithm reduced the training data size by around 80% for both without compromising the performance of the MLP models. We verified that the results were independent of the selection and ordering of the initial structures. We also compared the performance of our method with the farthest point sampling algorithm, and the results show that our algorithm is superior in both robustness and computational efficiency. Furthermore, the generated local environment bank can be continuously updated and can potentially serve as a growing database of feature local environments, aiding in efficient dataset maintenance for constructing accurate MLPs.
Collapse
Affiliation(s)
- Renzhe Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, People's Republic of China
| | - Chuan Zhou
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Akksay Singh
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yong Pei
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, People's Republic of China
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Pollet R, Dognon JP, Berthault P. Isomer-Dependent Escape Rate of Xenon from a Water-Soluble Cryptophane Cage Studied by Ab Initio Molecular Dynamics. Chemphyschem 2024; 25:e202300509. [PMID: 37905939 DOI: 10.1002/cphc.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
The escape of xenon from the anti and syn diastereomers of hexacarboxylic-cryptophane-222 in water has been studied by ab initio molecular dynamics simulations. The structures of both complexes, when the xenon atom is trapped inside their cages, have been compared and show no major differences. The free-energy profiles corresponding to the escape reaction have been calculated with the Blue Moon ensemble method using the distance between Xe and the center of mass of the cage as the reaction coordinate. The resulting free-energy barriers are very different; the escape rate is much faster in the case of the syn diastereomer, in agreement with experimental data obtained in hyperpolarized 129 Xe NMR. Our simulations reveal the mechanistic details for each diastereomer and provide an explanation for the different in-out xenon rates based on the solvation structure around the cages.
Collapse
Affiliation(s)
- R Pollet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - J-P Dognon
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - P Berthault
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Herringer NSM, Dasetty S, Gandhi D, Lee J, Ferguson AL. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables. J Chem Theory Comput 2024; 20:178-198. [PMID: 38150421 DOI: 10.1021/acs.jctc.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The typically rugged nature of molecular free-energy landscapes can frustrate efficient sampling of the thermodynamically relevant phase space due to the presence of high free-energy barriers. Enhanced sampling techniques can improve phase space exploration by accelerating sampling along particular collective variables (CVs). A number of techniques exist for the data-driven discovery of CVs parametrizing the important large-scale motions of the system. A challenge to CV discovery is learning CVs invariant to the symmetries of the molecular system, frequently rigid translation, rigid rotation, and permutational relabeling of identical particles. Of these, permutational invariance has proved a persistent challenge in frustrating the data-driven discovery of multimolecular CVs in systems of self-assembling particles and solvent-inclusive CVs for solvated systems. In this work, we integrate permutation invariant vector (PIV) featurizations with autoencoding neural networks to learn nonlinear CVs invariant to translation, rotation, and permutation and perform interleaved rounds of CV discovery and enhanced sampling to iteratively expand the sampling of configurational phase space and obtain converged CVs and free-energy landscapes. We demonstrate the permutationally invariant network for enhanced sampling (PINES) approach in applications to the self-assembly of a 13-atom argon cluster, association/dissociation of a NaCl ion pair in water, and hydrophobic collapse of a C45H92 n-pentatetracontane polymer chain. We make the approach freely available as a new module within the PLUMED2 enhanced sampling libraries.
Collapse
Affiliation(s)
| | - Siva Dasetty
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Diya Gandhi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Junhee Lee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Ghafouri H, Lazar T, Del Conte A, Tenorio Ku LG, Tompa P, Tosatto SCE, Monzon AM. PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins. Nucleic Acids Res 2024; 52:D536-D544. [PMID: 37904608 PMCID: PMC10767937 DOI: 10.1093/nar/gkad947] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network-all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.
Collapse
Affiliation(s)
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Budapest, Hungary
| | | | | |
Collapse
|
14
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
15
|
Pasarkar AP, Bencomo GM, Olsson S, Dieng AB. Vendi sampling for molecular simulations: Diversity as a force for faster convergence and better exploration. J Chem Phys 2023; 159:144108. [PMID: 37823459 DOI: 10.1063/5.0166172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Molecular dynamics (MD) is the method of choice for understanding the structure, function, and interactions of molecules. However, MD simulations are limited by the strong metastability of many molecules, which traps them in a single conformation basin for an extended amount of time. Enhanced sampling techniques, such as metadynamics and replica exchange, have been developed to overcome this limitation and accelerate the exploration of complex free energy landscapes. In this paper, we propose Vendi Sampling, a replica-based algorithm for increasing the efficiency and efficacy of the exploration of molecular conformation spaces. In Vendi sampling, replicas are simulated in parallel and coupled via a global statistical measure, the Vendi Score, to enhance diversity. Vendi sampling allows for the recovery of unbiased sampling statistics and dramatically improves sampling efficiency. We demonstrate the effectiveness of Vendi sampling in improving molecular dynamics simulations by showing significant improvements in coverage and mixing between metastable states and convergence of free energy estimates for four common benchmarks, including Alanine Dipeptide and Chignolin.
Collapse
Affiliation(s)
- Amey P Pasarkar
- Vertaix, Department of Computer Science, Princeton University, 35 Olden Street, Princeton, New Jersey 08544, USA
| | - Gianluca M Bencomo
- Department of Computer Science, Princeton University, 35 Olden Street, Princeton, New Jersey 08544, USA
| | - Simon Olsson
- Department of Computer Science and Engineering, Chalmers University of Technology, Rännvägen 6, 41258 Gothenburg, Sweden
| | - Adji Bousso Dieng
- Vertaix, Department of Computer Science, Princeton University, 35 Olden Street, Princeton, New Jersey 08544, USA
| |
Collapse
|
16
|
Çınaroğlu S, Biggin PC. Computed Protein-Protein Enthalpy Signatures as a Tool for Identifying Conformation Sampling Problems. J Chem Inf Model 2023; 63:6095-6108. [PMID: 37759363 PMCID: PMC10565830 DOI: 10.1021/acs.jcim.3c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/29/2023]
Abstract
Understanding the thermodynamic signature of protein-peptide binding events is a major challenge in computational chemistry. The complexity generated by both components possessing many degrees of freedom poses a significant issue for methods that attempt to directly compute the enthalpic contribution to binding. Indeed, the prevailing assumption has been that the errors associated with such approaches would be too large for them to be meaningful. Nevertheless, we currently have no indication of how well the present methods would perform in terms of predicting the enthalpy of binding for protein-peptide complexes. To that end, we carefully assembled and curated a set of 11 protein-peptide complexes where there is structural and isothermal titration calorimetry data available and then computed the absolute enthalpy of binding. The initial "out of the box" calculations were, as expected, very modest in terms of agreement with the experiment. However, careful inspection of the outliers allows for the identification of key sampling problems such as distinct conformations of peptide termini not being sampled or suboptimal cofactor parameters. Additional simulations guided by these aspects can lead to a respectable correlation with isothermal titration calorimetry (ITC) experiments (R2 of 0.88 and an RMSE of 1.48 kcal/mol overall). Although one cannot know prospectively whether computed ITC values will be correct or not, this work shows that if experimental ITC data are available, then this in conjunction with computed ITC, can be used as a tool to know if the ensemble being simulated is representative of the true ensemble or not. That is important for allowing the correct interpretation of the detailed dynamics of the system with respect to the measured enthalpy. The results also suggest that computational calorimetry is becoming increasingly feasible. We provide the data set as a resource for the community, which could be used as a benchmark to help further progress in this area.
Collapse
Affiliation(s)
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
17
|
Hamerla C, Mondal P, Hegger R, Burghardt I. Controlled destabilization of caged circularized DNA oligonucleotides predicted by replica exchange molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:26132-26144. [PMID: 37740309 DOI: 10.1039/d3cp02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Spatiotemporal control is a critical issue in the design of strategies for the photoregulation of oligonucleotide activity. Efficient uncaging, i.e., activation by removal of photolabile protecting groups (PPGs), often necessitates multiple PPGs. An alternative approach is based on circularization strategies, exemplified by intrasequential circularization, also denoted photo-tethering, as introduced in [Seyfried et al., Angew. Chem., Int. Ed., 2017, 56, 359]. Here, we develop a computational protocol, relying on replica exchange molecular dynamics (REMD), in order to characterize the destabilization of a series of circularized, caged DNA oligonucleotides addressed in the aforementioned study. For these medium-sized (32 nt) oligonucleotides, melting temperatures are computed, whose trend is in good agreement with experiment, exhibiting a large destabilization and, hence, reduction of the melting temperature of the order of ΔTm ∼ 30 K as compared with the native species. The analysis of free energy landscapes confirms the destabilization pattern experienced by the circularized oligonucleotides. The present study underscores that computational protocols that capture controlled destabilization and uncaging of oligonucleotides are promising as predictive tools in the tailored photocontrol of nucleic acids.
Collapse
Affiliation(s)
- Carsten Hamerla
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Panguru (G.P), Yerpedu Mandal, 517619 - Tirupati Dist., Andhra Pradesh, India
| | - Rainer Hegger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Tripathi S, Nair NN. Temperature Accelerated Sliced Sampling to Probe Ligand Dissociation from Protein. J Chem Inf Model 2023; 63:5182-5191. [PMID: 37540828 DOI: 10.1021/acs.jcim.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Modeling ligand unbinding in proteins to estimate the free energy of binding and probing the mechanism presents several challenges. They primarily pertain to the entropic bottlenecks resulting from protein and solvent conformations. While exploring the unbinding processes using enhanced sampling techniques, very long simulations are required to sample all of the conformational states as the system gets trapped in local free energy minima along transverse coordinates. Here, we demonstrate that temperature accelerated sliced sampling (TASS) is an ideal approach to overcome some of the difficulties faced by conventional sampling methods in studying ligand unbinding. Using TASS, we study the unbinding of avibactam inhibitor molecules from the Class C β-lactamase (CBL) active site. Extracting CBL-avibactam unbinding free energetics, unbinding pathways, and identifying critical interactions from the TASS simulations are demonstrated.
Collapse
Affiliation(s)
- Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
19
|
Sasmal S, McCullagh M, Hocky GM. Reaction Coordinates for Conformational Transitions Using Linear Discriminant Analysis on Positions. J Chem Theory Comput 2023; 19:4427-4435. [PMID: 37130367 PMCID: PMC10373481 DOI: 10.1021/acs.jctc.3c00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 05/04/2023]
Abstract
In this work, we demonstrate that Linear Discriminant Analysis (LDA) applied to atomic positions in two different states of a biomolecule produces a good reaction coordinate between those two states. Atomic coordinates of a macromolecule are a direct representation of a macromolecular configuration, and yet, they are not used in enhanced sampling studies due to a lack of rotational and translational invariance. We resolve this issue using the technique of our prior work, whereby a molecular configuration is considered a member of an equivalence class in size-and-shape space, which is the set of all configurations that can be translated and rotated to a single point within a reference multivariate Gaussian distribution characterizing a single molecular state. The reaction coordinates produced by LDA applied to positions are shown to be good reaction coordinates both in terms of characterizing the transition between two states of a system within a long molecular dynamics (MD) simulation and also ones that allow us to readily produce free energy estimates along that reaction coordinate using enhanced sampling MD techniques.
Collapse
Affiliation(s)
- Subarna Sasmal
- Department
of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| | - Martin McCullagh
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Glen M. Hocky
- Department
of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
20
|
Scrima S, Tiberti M, Ryde U, Lambrughi M, Papaleo E. Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140921. [PMID: 37230374 DOI: 10.1016/j.bbapap.2023.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulf Ryde
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
21
|
Dabin A, Stirnemann G. Toward a Molecular Mechanism of Complementary RNA Duplexes Denaturation. J Phys Chem B 2023. [PMID: 37389985 DOI: 10.1021/acs.jpcb.3c00908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
RNA duplexes are relatively rare but play very important biological roles. As an end-product of template-based RNA replication, they also have key implications for hypothetical primitive forms of life. Unless they are specifically separated by enzymes, these duplexes denature upon a temperature increase. However, mechanistic and kinetic aspects of RNA (and DNA) duplex thermal denaturation remain unclear at the microscopic level. We propose an in silico strategy that probes the thermal denaturation of RNA duplexes and allows for an extensive conformational space exploration along a wide temperature range with atomistic precision. We show that this approach first accounts for the strong sequence and length dependence of the duplexes melting temperature, reproducing the trends seen in the experiments and predicted by nearest-neighbor models. The simulations are then instrumental at providing a molecular picture of the temperature-induced strand separation. The textbook canonical "all-or-nothing" two-state model, very much inspired by the protein folding mechanism, can be nuanced. We demonstrate that a temperature increase leads to significantly distorted but stable structures with extensive base-fraying at the extremities, and that the fully formed duplexes typically do not form around melting. The duplex separation therefore appears as much more gradual than commonly thought.
Collapse
Affiliation(s)
- Aimeric Dabin
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
22
|
Lequieu J. Combining particle and field-theoretic polymer models with multi-representation simulations. J Chem Phys 2023; 158:244902. [PMID: 37377157 DOI: 10.1063/5.0153104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Particle-based and field-theoretic simulations are both widely used methods to predict the properties of polymeric materials. In general, the advantages of each method are complementary. Field-theoretic simulations are preferred for polymers with high molecular weights and can provide direct access to chemical potentials and free energies, which makes them the method-of-choice for calculating phase diagrams. The trade-off is that field-theoretic simulations sacrifice the molecular details present in particle-based simulations, such as the configurations of individual molecules and their dynamics. In this work, we describe a new approach to conduct "multi-representation" simulations that efficiently map between particle-based and field-theoretic simulations. Our approach involves the construction of formally equivalent particle-based and field-based models, which are then simulated subject to the constraint that their spatial density profiles are equal. This constraint provides the ability to directly link particle-based and field-based simulations and enables calculations that can switch between one representation to the other. By switching between particle/field representations during a simulation, we demonstrate that our approach can leverage many of the advantages of each representation while avoiding their respective limitations. Although our method is illustrated in the context of complex sphere phases in linear diblock copolymers, we anticipate that it will be useful whenever free energies, rapid equilibration, molecular configurations, and dynamic information are all simultaneously desired.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Sheng Z, Bimela JS, Wang M, Li Z, Guo Y, Ho DD. An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Front Immunol 2023; 14:1190416. [PMID: 37275896 PMCID: PMC10235760 DOI: 10.3389/fimmu.2023.1190416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.
Collapse
Affiliation(s)
- Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S. Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
24
|
Rahimi K, Piaggi PM, Zerze GH. Comparison of On-the-Fly Probability Enhanced Sampling and Parallel Tempering Combined with Metadynamics for Atomistic Simulations of RNA Tetraloop Folding. J Phys Chem B 2023. [PMID: 37196167 DOI: 10.1021/acs.jpcb.3c00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atomistic simulations with reliable models are extremely useful in providing exquisitely detailed pictures of biomolecular phenomena that are not always accessible to experiments. One such biomolecular phenomenon is RNA folding, which often requires exhaustive simulations with combined advanced sampling techniques. In this work, we employed the multithermal-multiumbrella on-the-fly probability enhanced sampling (MM-OPES) technique and compared it against combined parallel tempering and metadynamics simulations. We found that MM-OPES simulations were successful in reproducing the free energy surfaces from combined parallel tempering and metadynamics simulations. Importantly, we also investigated a wide range of temperature sets (minimum and maximum temperatures) for MM-OPES simulations in order to identify some guidelines for deciding the temperature limits for an accurate and efficient exploration of the free energy landscapes. We found that most temperature sets yielded almost the same accuracy in reproducing the free energy surface at the ambient conditions as long as (i) the maximum temperature is reasonably high, (ii) the temperature at which we run the simulation is reasonably high (in our simulations, running temperature is defined as [minimum temperature + maximum temperature]/2), and (iii) the effective sample size at the temperature of interest is statistically reasonable. In terms of the computational cost, all MM-OPES simulations were nearly 4 times less costly than the combined parallel tempering and metadynamics simulations. We concluded that the demanding combined parallel tempering and metadynamics simulations can safely be replaced with approximately 4 times less costly MM-OPES simulations (with carefully selected temperature limits) to obtain the same information.
Collapse
Affiliation(s)
- Kosar Rahimi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Pablo M Piaggi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
25
|
Ermilova I, Swenson J. Ionizable lipids penetrate phospholipid bilayers with high phase transition temperatures: perspectives from free energy calculations. Chem Phys Lipids 2023; 253:105294. [PMID: 37003484 DOI: 10.1016/j.chemphyslip.2023.105294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The efficacies of modern gene-therapies strongly depend on their contents. At the same time the most potent formulations might not contain the best compounds. In this work we investigated the effect of phospholipids and their saturation on the binding ability of (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino) butanoate (DLin-MC3-DMA) to model membranes at the neutral pH. We discovered that DLin-MC3-DMA has affinity to the most saturated monocomponent lipid bilayer 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an aversion to the unsaturated one 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The preference to a certain membrane was also well-correlated to the phase transition temperatures of phospholipid bilayers, and to their structural and dynamical properties. Additionally, in the case of the presence of DLin-MC3-DMA in the membrane with DOPC the ionizable lipid penetrated it, which indicates possible synergistic effects. Comparisons with other ionizable lipids were performed using a model lipid bilayer of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). Particularly, the lipids heptadecan-9-yl 8-[2-hydroxyethyl-(6-oxo-6-undecoxyhexyl)amino]octanoate (SM-102) and [(4-Hydroxybutyl) azanediyl] di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) from modern mRNA-vaccines against COVID-19 were investigated and force fields parameters were derived for those new lipids. It was discovered that ALC-0315 binds strongest to the membrane, while DLin-MC3-DMA is not able to reside in the bilayer center. The ability to penetrate the membrane POPC by SM-102 and ALC-0315 can be related to their saturation, comparing to DLin-MC3-DMA.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Physics, Chalmers Uiversity of Technology, SE 412 96, Gothenburg, Sweden.
| | - Jan Swenson
- Department of Physics, Chalmers Uiversity of Technology, SE 412 96, Gothenburg, Sweden.
| |
Collapse
|
26
|
Wang J, Do HN, Koirala K, Miao Y. Predicting Biomolecular Binding Kinetics: A Review. J Chem Theory Comput 2023; 19:2135-2148. [PMID: 36989090 DOI: 10.1021/acs.jctc.2c01085] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Biomolecular binding kinetics including the association (kon) and dissociation (koff) rates are critical parameters for therapeutic design of small-molecule drugs, peptides, and antibodies. Notably, the drug molecule residence time or dissociation rate has been shown to correlate with their efficacies better than binding affinities. A wide range of modeling approaches including quantitative structure-kinetic relationship models, Molecular Dynamics simulations, enhanced sampling, and Machine Learning has been developed to explore biomolecular binding and dissociation mechanisms and predict binding kinetic rates. Here, we review recent advances in computational modeling of biomolecular binding kinetics, with an outlook for future improvements.
Collapse
Affiliation(s)
- Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | - Hung N Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kushal Koirala
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
27
|
Dutta P, Sengupta N. Efficient Interrogation of the Kinetic Barriers Demarcating Catalytic States of a Tyrosine Kinase with Optimal Physical Descriptors and Mixture Models. Chemphyschem 2023; 24:e202200595. [PMID: 36394126 DOI: 10.1002/cphc.202200595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Computer simulations are increasingly used to access thermo-kinetic information underlying structural transformation of protein kinases. Such information are necessary to probe their roles in disease progression and interactions with drug targets. However, the investigations are frequently challenged by forbiddingly high computational expense, and by the lack of standard protocols for the design of low dimensional physical descriptors that encode system features important for transitions. Here, we consider the demarcating characteristics of the different states of Abelson tyrosine kinase associated with distinct catalytic activity to construct a set of physically meaningful, orthogonal collective variables that preserve the slow modes of the system. Independent sampling of each metastable state is followed by the estimation of global partition function along the appropriate physical descriptors using the modified Expectation Maximized Molecular Dynamics method. The resultant free energy barriers are in excellent agreement with experimentally known rate-limiting dynamics and activation energy computed with conventional enhanced sampling methods. We discuss possible directions for further development and applications.
Collapse
Affiliation(s)
- Pallab Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
28
|
Agles AA, Bourg IC. Structure-Thermodynamic Relationship of a Polysaccharide Gel (Alginate) as a Function of Water Content and Counterion Type (Na vs Ca). J Phys Chem B 2023; 127:1828-1841. [PMID: 36791328 PMCID: PMC10159261 DOI: 10.1021/acs.jpcb.2c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering and High Meadows Environmental
Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Brickel S, Demkiv AO, Crean RM, Pinto GP, Kamerlin SCL. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations. J Mol Graph Model 2023; 119:108402. [PMID: 36610324 DOI: 10.1016/j.jmgm.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The exploration of chemical systems occurs on complex energy landscapes. Comprehensively sampling rugged energy landscapes with many local minima is a common problem for molecular dynamics simulations. These multiple local minima trap the dynamic system, preventing efficient sampling. This is a particular challenge for large biochemical systems with many degrees of freedom. Replica exchange molecular dynamics (REMD) is an approach that accelerates the exploration of the conformational space of a system, and thus can be used to enhance the sampling of complex biomolecular processes. In parallel, the empirical valence bond (EVB) approach is a powerful approach for modeling chemical reactivity in biomolecular systems. Here, we present an open-source Python-based tool that interfaces with the Q simulation package, and increases the sampling efficiency of the EVB free energy perturbation/umbrella sampling approach by means of REMD. This approach, Q-RepEx, both decreases the computational cost of the associated REMD-EVB simulations, and opens the door to more efficient studies of biochemical reactivity in systems with significant conformational fluctuations along the chemical reaction coordinate.
Collapse
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Rory M Crean
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
30
|
Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket. J Chem Theory Comput 2023; 19:733-745. [PMID: 36706316 DOI: 10.1021/acs.jctc.2c01194] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from molecular simulations due to limited simulation timescales. Protein dynamics, especially in the ligand binding pocket, often plays an important role in ligand binding. Based on our previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained ligand binding kinetic rates and free energies agreed well with available experimental values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for efficient calculations of ligand binding thermodynamics and kinetics.
Collapse
|
31
|
Janson G, Valdes-Garcia G, Heo L, Feig M. Direct generation of protein conformational ensembles via machine learning. Nat Commun 2023; 14:774. [PMID: 36774359 PMCID: PMC9922302 DOI: 10.1038/s41467-023-36443-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Dynamics and conformational sampling are essential for linking protein structure to biological function. While challenging to probe experimentally, computer simulations are widely used to describe protein dynamics, but at significant computational costs that continue to limit the systems that can be studied. Here, we demonstrate that machine learning can be trained with simulation data to directly generate physically realistic conformational ensembles of proteins without the need for any sampling and at negligible computational cost. As a proof-of-principle we train a generative adversarial network based on a transformer architecture with self-attention on coarse-grained simulations of intrinsically disordered peptides. The resulting model, idpGAN, can predict sequence-dependent coarse-grained ensembles for sequences that are not present in the training set demonstrating that transferability can be achieved beyond the limited training data. We also retrain idpGAN on atomistic simulation data to show that the approach can be extended in principle to higher-resolution conformational ensemble generation.
Collapse
Affiliation(s)
- Giacomo Janson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
32
|
Nishimura Y, Nakai H. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. J Chem Phys 2023; 158:054106. [PMID: 36754823 DOI: 10.1063/5.0132573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, extensions to quantum chemical nanoreactor molecular dynamics simulations for discovering complex reactive events are presented. The species-selective algorithm, where the nanoreactor effectively works for the selected desired reactants, was introduced to the original scheme. Moreover, for efficient simulations of large model systems with the modified approach, the divide-and-conquer linear-scaling density functional tight-binding method was exploited. Two illustrative applications of the polymerization of propylene and cyclopropane mixtures and the aggregation of sodium chloride from aqueous solutions indicate that species-selective quantum chemical nanoreactor molecular dynamics is a promising method to accelerate the sampling of multicomponent chemical processes proceeding under relatively mild conditions.
Collapse
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
33
|
Zhao Y, Zhang J, Zhang H, Gu S, Deng Y, Tu Y, Hou T, Kang Y. Sigmoid Accelerated Molecular Dynamics: An Efficient Enhanced Sampling Method for Biosystems. J Phys Chem Lett 2023; 14:1103-1112. [PMID: 36700836 DOI: 10.1021/acs.jpclett.2c03688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gaussian accelerated molecular dynamics (GaMD) is recognized as a popular enhanced sampling method for tackling long-standing challenges in biomolecular simulations. Inspired by GaMD, Sigmoid accelerated molecular dynamics (SaMD) is proposed in this work by adding a Sigmoid boost potential to improve the balance between the highest acceleration and accurate reweighting. Compared with GaMD, SaMD extends the accessible time scale and improves the computational efficiency as tested in three tasks. In the alanine dipeptide task, SaMD can produce the free energy landscape with better accuracy and efficiency. In the chignolin folding task, the estimated Gibbs free energy difference can converge to the experimental value ∼30% faster. In the protein-ligand binding task, the bound conformations are closer to the crystal structure with a minimal ligand root-mean-square deviation of 1.7 Å. The binding of the ligand XK263 to the HIV protease is reproduced by SaMD in ∼60% less simulation time.
Collapse
Affiliation(s)
- Yihao Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Jintu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
- CarbonSilicon AI Technology Company, Ltd., Hangzhou310018, Zhejiang, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
- CarbonSilicon AI Technology Company, Ltd., Hangzhou310018, Zhejiang, China
| | - Shukai Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Yafeng Deng
- CarbonSilicon AI Technology Company, Ltd., Hangzhou310018, Zhejiang, China
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, Department of Chemistry, KTH Royal Institute of Technology, 114 28Stockholm, Sweden
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| |
Collapse
|
34
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
35
|
Kulshrestha A, Maurya S, Gupta T, Roy R, Punnathanam SN, Ayappa KG. Conformational Flexibility Is a Key Determinant for the Lytic Activity of the Pore-Forming Protein, Cytolysin A. J Phys Chem B 2023; 127:69-84. [PMID: 36542809 DOI: 10.1021/acs.jpcb.2c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several bacterial infections are mediated by pore-forming toxins (PFTs), a subclass of proteins that oligomerize on mammalian cell membranes forming lytic nanopores. Cytolysin A (ClyA), an α-PFT, undergoes a dramatic conformational change restructuring its two membrane-binding motifs (the β-tongue and the N-terminus helix), during pore formation. A complete molecular picture for this key transition and the driving force behind the secondary structure change upon membrane binding remain elusive. Using all-atom molecular dynamics (MD) simulations of the ClyA monomer and string method based free energy computations with path collective variables, we illustrate that an unfolded β-tongue motif is an on-pathway intermediate during the transition to the helix-turn-helix motif of the protomer. An aggregate of 28 μs of all-atom thermal unfolding MD simulations of wild-type ClyA and its single point mutants reveal that the membrane-binding motifs of the ClyA protein display high structural flexibility in water. However, point mutations in these motifs lead to a distinct reduction in the flexibility, especially in the β-tongue, thereby stabilizing the pretransition secondary structure. Resistance to unfolding was further corroborated by MD simulations of the β-tongue mutant motif in the membrane. Combined with the thermal unfolding simulations, we posit that the β-tongue as well as N-terminal mutants that lower the tendency to unfold and disorder the β-tongue are detrimental to pore formation by ClyA and its lytic activity. Erythrocyte turbidity and vesicle leakage assays indeed reveal a loss of activity for the β-tongue mutant, and delayed kinetics for the N-terminus mutants. On the other hand, a point mutation in the extracellular domain that did not abrogate lytic activity displayed similar unfolding characteristics as the wild type. Thus, attenuation of conformational flexibility in membrane-binding motifs correlates with reduced lytic and leakage activity. Combined with secondary structure changes observed in the membrane bound states, our study shows that the tendency to unfold in the β-tongue region is a critical step in the conformational transition and bistability of the ClyA protein and mutants that disrupt this tendency reduced pore formation. Overall, our finding suggests that inherent flexibility in the protein could play a wider and hitherto unrecognized role in membrane-mediated conformational transitions of PFTs and other membrane protein transformations.
Collapse
Affiliation(s)
- Avijeet Kulshrestha
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Satyaghosh Maurya
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Twinkle Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
36
|
Neha, Tiwari V, Mondal S, Kumari N, Karmakar T. Collective Variables for Crystallization Simulations-from Early Developments to Recent Advances. ACS OMEGA 2023; 8:127-146. [PMID: 36643553 PMCID: PMC9835087 DOI: 10.1021/acsomega.2c06310] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2024]
Abstract
Crystallization is an important physicochemical process which has relevance in material science, biology, and the environment. Decades of experimental and theoretical efforts have been made to understand this fundamental symmetry-breaking transition. While experiments provide equilibrium structures and shapes of crystals, they are limited to unraveling how molecules aggregate to form crystal nuclei that subsequently transform into bulk crystals. Computer simulations, mainly molecular dynamics (MD), can provide such microscopic details during the early stage of a crystallization event. Crystallization is a rare event that takes place in time scales much longer than a typical equilibrium MD simulation can sample. This inadequate sampling of the MD method can be easily circumvented by the use of enhanced sampling (ES) simulations. In most of the ES methods, the fluctuations of a system's slow degrees of freedom, called collective variables (CVs), are enhanced by applying a bias potential. This transforms the system from one state to the other within a short time scale. The most crucial part of such CV-based ES methods is to find suitable CVs, which often needs intuition and several trial-and-error optimization steps. Over the years, a plethora of CVs has been developed and applied in the study of crystallization. In this review, we provide a brief overview of CVs that have been developed and used in ES simulations to study crystallization from melt or solution. These CVs can be categorized mainly into four types: (i) spherical particle-based, (ii) molecular template-based, (iii) physical property-based, and (iv) CVs obtained from dimensionality reduction techniques. We present the context-based evolution of CVs, discuss the current challenges, and propose future directions to further develop effective CVs for the study of crystallization of complex systems.
Collapse
Affiliation(s)
| | | | | | | | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
37
|
Chen H, Chipot C. Chasing collective variables using temporal data-driven strategies. QRB DISCOVERY 2023; 4:e2. [PMID: 37564298 PMCID: PMC10411323 DOI: 10.1017/qrd.2022.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The convergence of free-energy calculations based on importance sampling depends heavily on the choice of collective variables (CVs), which in principle, should include the slow degrees of freedom of the biological processes to be investigated. Autoencoders (AEs), as emerging data-driven dimension reduction tools, have been utilised for discovering CVs. AEs, however, are often treated as black boxes, and what AEs actually encode during training, and whether the latent variables from encoders are suitable as CVs for further free-energy calculations remains unknown. In this contribution, we review AEs and their time-series-based variants, including time-lagged AEs (TAEs) and modified TAEs, as well as the closely related model variational approach for Markov processes networks (VAMPnets). We then show through numerical examples that AEs learn the high-variance modes instead of the slow modes. In stark contrast, time series-based models are able to capture the slow modes. Moreover, both modified TAEs with extensions from slow feature analysis and the state-free reversible VAMPnets (SRVs) can yield orthogonal multidimensional CVs. As an illustration, we employ SRVs to discover the CVs of the isomerizations of N-acetyl-N'-methylalanylamide and trialanine by iterative learning with trajectories from biased simulations. Last, through numerical experiments with anisotropic diffusion, we investigate the potential relationship of time-series-based models and committor probabilities.
Collapse
Affiliation(s)
- Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
38
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
39
|
Rydzewski J, Chen M, Ghosh TK, Valsson O. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations. J Chem Theory Comput 2022; 18:7179-7192. [PMID: 36367826 DOI: 10.1021/acs.jctc.2c00873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhanced sampling methods are indispensable in computational chemistry and physics, where atomistic simulations cannot exhaustively sample the high-dimensional configuration space of dynamical systems due to the sampling problem. A class of such enhanced sampling methods works by identifying a few slow degrees of freedom, termed collective variables (CVs), and enhancing the sampling along these CVs. Selecting CVs to analyze and drive the sampling is not trivial and often relies on chemical intuition. Despite routinely circumventing this issue using manifold learning to estimate CVs directly from standard simulations, such methods cannot provide mappings to a low-dimensional manifold from enhanced sampling simulations, as the geometry and density of the learned manifold are biased. Here, we address this crucial issue and provide a general reweighting framework based on anisotropic diffusion maps for manifold learning that takes into account that the learning data set is sampled from a biased probability distribution. We consider manifold learning methods based on constructing a Markov chain describing transition probabilities between high-dimensional samples. We show that our framework reverts the biasing effect, yielding CVs that correctly describe the equilibrium density. This advancement enables the construction of low-dimensional CVs using manifold learning directly from the data generated by enhanced sampling simulations. We call our framework reweighted manifold learning. We show that it can be used in many manifold learning techniques on data from both standard and enhanced sampling simulations.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tushar K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Omar Valsson
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
40
|
Wu F, Jin S, Jiang Y, Jin X, Tang B, Niu Z, Liu X, Zhang Q, Zeng X, Li SZ. Pre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203796. [PMID: 36202759 PMCID: PMC9685463 DOI: 10.1002/advs.202203796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Indexed: 05/16/2023]
Abstract
The latest biological findings observe that the motionless "lock-and-key" theory is not generally applicable and that changes in atomic sites and binding pose can provide important information for understanding drug binding. However, the computational expenditure limits the growth of protein trajectory-related studies, thus hindering the possibility of supervised learning. A spatial-temporal pre-training method based on the modified equivariant graph matching networks, dubbed ProtMD which has two specially designed self-supervised learning tasks: atom-level prompt-based denoising generative task and conformation-level snapshot ordering task to seize the flexibility information inside molecular dynamics (MD) trajectories with very fine temporal resolutions is presented. The ProtMD can grant the encoder network the capacity to capture the time-dependent geometric mobility of conformations along MD trajectories. Two downstream tasks are chosen to verify the effectiveness of ProtMD through linear detection and task-specific fine-tuning. A huge improvement from current state-of-the-art methods, with a decrease of 4.3% in root mean square error for the binding affinity problem and an average increase of 13.8% in the area under receiver operating characteristic curve and the area under the precision-recall curve for the ligand efficacy problem is observed. The results demonstrate a strong correlation between the magnitude of conformation's motion in the 3D space and the strength with which the ligand binds with its receptor.
Collapse
Affiliation(s)
- Fang Wu
- School of EngineeringWestlake UniversityHangzhou310024China
- MindRank AI Ltd.Hangzhou310000China
| | - Shuting Jin
- MindRank AI Ltd.Hangzhou310000China
- School of InformaticsXiamen UniversityXiamen361005China
| | | | | | | | | | - Xiangrong Liu
- School of InformaticsXiamen UniversityXiamen361005China
| | - Qiang Zhang
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310013China
| | - Xiangxiang Zeng
- School of Information Science and EngineeringHunan UniversityHunan410082China
| | - Stan Z. Li
- School of EngineeringWestlake UniversityHangzhou310024China
| |
Collapse
|
41
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
42
|
Dietschreit JCB, Diestler DJ, Hulm A, Ochsenfeld C, Gómez-Bombarelli R. From free-energy profiles to activation free energies. J Chem Phys 2022; 157:084113. [DOI: 10.1063/5.0102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given a chemical reaction going from reactant (R) to the product (P) on a potential energy surface (PES) and a collective variable (CV) discriminating between R and P, we define the free-energy profile (FEP) as the logarithm of the marginal Boltzmann distribution of the CV. This FEP is not a true free energy. Nevertheless, it is common to treat the FEP as the “free-energy” analog of the minimum potential energy path and to take the activation free energy, [Formula: see text], as the difference between the maximum at the transition state and the minimum at R. We show that this approximation can result in large errors. The FEP depends on the CV and is, therefore, not unique. For the same reaction, different discriminating CVs can yield different [Formula: see text]. We derive an exact expression for the activation free energy that avoids this ambiguity. We find [Formula: see text] to be a combination of the probability of the system being in the reactant state, the probability density on the dividing surface, and the thermal de Broglie wavelength associated with the transition. We apply our formalism to simple analytic models and realistic chemical systems and show that the FEP-based approximation applies only at low temperatures for CVs with a small effective mass. Most chemical reactions occur on complex, high-dimensional PES that cannot be treated analytically and pose the added challenge of choosing a good CV. We study the influence of that choice and find that, while the reaction free energy is largely unaffected, [Formula: see text] is quite sensitive.
Collapse
Affiliation(s)
- Johannes C. B. Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
43
|
From data to noise to data for mixing physics across temperatures with generative artificial intelligence. Proc Natl Acad Sci U S A 2022; 119:e2203656119. [PMID: 35925885 PMCID: PMC9371742 DOI: 10.1073/pnas.2203656119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using simulations or experiments performed at some set of temperatures to learn about the physics or chemistry at some other arbitrary temperature is a problem of immense practical and theoretical relevance. Here we develop a framework based on statistical mechanics and generative artificial intelligence that allows solving this problem. Specifically, we work with denoising diffusion probabilistic models and show how these models in combination with replica exchange molecular dynamics achieve superior sampling of the biomolecular energy landscape at temperatures that were never simulated without assuming any particular slow degrees of freedom. The key idea is to treat the temperature as a fluctuating random variable and not a control parameter as is usually done. This allows us to directly sample from the joint probability distribution in configuration and temperature space. The results here are demonstrated for a chirally symmetric peptide and single-strand RNA undergoing conformational transitions in all-atom water. We demonstrate how we can discover transition states and metastable states that were previously unseen at the temperature of interest and even bypass the need to perform further simulations for a wide range of temperatures. At the same time, any unphysical states are easily identifiable through very low Boltzmann weights. The procedure while shown here for a class of molecular simulations should be more generally applicable to mixing information across simulations and experiments with varying control parameters.
Collapse
|
44
|
Hulm A, Dietschreit JCB, Ochsenfeld C. Statistically optimal analysis of the extended-system adaptive biasing force (eABF) method. J Chem Phys 2022; 157:024110. [PMID: 35840392 DOI: 10.1063/5.0095554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The extended-system adaptive biasing force (eABF) method and its newer variants offer rapid exploration of the configuration space of chemical systems. Instead of directly applying the ABF bias to collective variables, they are harmonically coupled to fictitious particles, which separates the problem of enhanced sampling from that of free energy estimation. The prevalent analysis method to obtain the potential of mean force (PMF) from eABF is thermodynamic integration. However, besides the PMF, most information is lost as the unbiased probability of visited configurations is never recovered. In this contribution, we show how statistical weights of individual frames can be computed using the Multistate Bennett's Acceptance Ratio (MBAR), putting the post-processing of eABF on one level with other frequently used sampling methods. In addition, we apply this formalism to the prediction of nuclear magnetic resonance shieldings, which are very sensitive to molecular geometries and often require extensive sampling. The results show that the combination of enhanced sampling by means of extended-system dynamics with the MBAR estimator is a highly useful tool for the calculation of ensemble properties. Furthermore, the extension of the presented scheme to the recently published Gaussian-accelerated molecular dynamics eABF hybrid is straightforward and approximation free.
Collapse
Affiliation(s)
- Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| |
Collapse
|
45
|
Harmalkar A, Mahajan SP, Gray JJ. Induced fit with replica exchange improves protein complex structure prediction. PLoS Comput Biol 2022; 18:e1010124. [PMID: 35658008 PMCID: PMC9200320 DOI: 10.1371/journal.pcbi.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/15/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Despite the progress in prediction of protein complexes over the last decade, recent blind protein complex structure prediction challenges revealed limited success rates (less than 20% models with DockQ score > 0.4) on targets that exhibit significant conformational change upon binding. To overcome limitations in capturing backbone motions, we developed a new, aggressive sampling method that incorporates temperature replica exchange Monte Carlo (T-REMC) and conformational sampling techniques within docking protocols in Rosetta. Our method, ReplicaDock 2.0, mimics induced-fit mechanism of protein binding to sample backbone motions across putative interface residues on-the-fly, thereby recapitulating binding-partner induced conformational changes. Furthermore, ReplicaDock 2.0 clocks in at 150-500 CPU hours per target (protein-size dependent); a runtime that is significantly faster than Molecular Dynamics based approaches. For a benchmark set of 88 proteins with moderate to high flexibility (unbound-to-bound iRMSD over 1.2 Å), ReplicaDock 2.0 successfully docks 61% of moderately flexible complexes and 35% of highly flexible complexes. Additionally, we demonstrate that by biasing backbone sampling particularly towards residues comprising flexible loops or hinge domains, highly flexible targets can be predicted to under 2 Å accuracy. This indicates that additional gains are possible when mobile protein segments are known.
Collapse
Affiliation(s)
- Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Gupta A, Verma S, Javed R, Sudhakar S, Srivastava S, Nair NN. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. J Comput Chem 2022; 43:1186-1200. [PMID: 35510789 DOI: 10.1002/jcc.26882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
Abstract
Temperature-accelerated sliced sampling (TASS) is an enhanced sampling method for achieving accelerated and controlled exploration of high-dimensional free energy landscapes in molecular dynamics simulations. With the aid of umbrella bias potentials, the TASS method realizes a controlled exploration and divide-and-conquer strategy for computing high-dimensional free energy surfaces. In TASS, diffusion of the system in the collective variable (CV) space is enhanced with the help of metadynamics bias and elevated-temperature of the auxiliary degrees of freedom (DOF) that are coupled to the CVs. Usually, a low-dimensional metadynamics bias is applied in TASS. In order to further improve the performance of TASS, we propose here to use a highdimensional metadynamics bias, in the same form as in a parallel bias metadynamics scheme. Here, a modified reweighting scheme, in combination with artificial neural network is used for computing unbiased probability distribution of CVs and projections of high-dimensional free energy surfaces. We first validate the accuracy and efficiency of our method in computing the four-dimensional free energy landscape for alanine tripeptide in vacuo. Subsequently, we employ the approach to calculate the eight-dimensional free energy landscape of alanine pentapeptide in vacuo. Finally, the method is applied to a more realistic problem wherein we compute the broad four-dimensional free energy surface corresponding to the deacylation of a drug molecule which is covalently complexed with a β-lactamase enzyme. We demonstrate that using parallel bias in TASS improves the efficiency of exploration of high-dimensional free energy landscapes.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ramsha Javed
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Suraj Sudhakar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
47
|
Rosenberger D, Barros K, Germann TC, Lubbers N. Machine learning of consistent thermodynamic models using automatic differentiation. Phys Rev E 2022; 105:045301. [PMID: 35590626 DOI: 10.1103/physreve.105.045301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
We propose a data-driven method to describe consistent equations of state (EOS) for arbitrary systems. Complex EOS are traditionally obtained by fitting suitable analytical expressions to thermophysical data. A key aspect of EOS is that the relationships between state variables are given by derivatives of the system free energy. In this work, we model the free energy with an artificial neural network and utilize automatic differentiation to directly learn the derivatives of the free energy. We demonstrate this approach on two different systems, the analytic van der Waals EOS and published data for the Lennard-Jones fluid, and we show that it is advantageous over direct learning of thermodynamic properties (i.e., not as derivatives of the free energy but as independent properties), in terms of both accuracy and the exact preservation of the Maxwell relations. Furthermore, the method implicitly provides the free energy of a system without explicit integration.
Collapse
Affiliation(s)
- David Rosenberger
- Los Alamos National Laboratory, Theoretical Division, Physics and Chemistry of Materials Group, Los Alamos, New Mexico 87545, USA
| | - Kipton Barros
- Los Alamos National Laboratory, Theoretical Division, Physics and Chemistry of Materials Group, Los Alamos, New Mexico 87545, USA
| | - Timothy C Germann
- Los Alamos National Laboratory, Theoretical Division, Physics and Chemistry of Materials Group, Los Alamos, New Mexico 87545, USA
| | - Nicholas Lubbers
- Los Alamos National Laboratory, Computer, Computational & Statistical Sciences Division, Information Sciences Group, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
48
|
Krieger JM, Sorzano COS, Carazo JM, Bahar I. Protein dynamics developments for the large scale and cryoEM: case study of ProDy 2.0. Acta Crystallogr D Struct Biol 2022; 78:399-409. [PMID: 35362464 PMCID: PMC8972803 DOI: 10.1107/s2059798322001966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) has become a well established technique with the potential to produce structures of large and dynamic supramolecular complexes that are not amenable to traditional approaches for studying structure and dynamics. The size and low resolution of such molecular systems often make structural modelling and molecular dynamics simulations challenging and computationally expensive. This, together with the growing wealth of structural data arising from cryoEM and other structural biology methods, has driven a trend in the computational biophysics community towards the development of new pipelines for analysing global dynamics using coarse-grained models and methods. At the centre of this trend has been a return to elastic network models, normal mode analysis (NMA) and ensemble analyses such as principal component analysis, and the growth of hybrid simulation methodologies that make use of them. Here, this field is reviewed with a focus on ProDy, the Python application programming interface for protein dynamics, which has been developed over the last decade. Two key developments in this area are highlighted: (i) ensemble NMA towards extracting and comparing the signature dynamics of homologous structures, aided by the recent SignDy pipeline, and (ii) pseudoatom fitting for more efficient global dynamics analyses of large and low-resolution supramolecular assemblies from cryoEM, revisited in the CryoDy pipeline. It is believed that such a renewal and extension of old models and methods in new pipelines will be critical for driving the field forward into the next cryoEM revolution.
Collapse
Affiliation(s)
- James Michael Krieger
- Biocomputing Unit, Centro Nacional de Biotecnología (CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología (CSIC), Calle Darwin 3, 28049 Madrid, Spain
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
49
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
50
|
Pawnikar S, Miao Y. Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor. Front Mol Biosci 2022; 9:821055. [PMID: 35359589 PMCID: PMC8963245 DOI: 10.3389/fmolb.2022.821055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Chemokine receptors are key G-protein-coupled receptors (GPCRs) that control cell migration in immune system responses, development of cardiovascular and central nervous systems, and numerous diseases. In particular, the CXCR4 chemokine receptor promotes metastasis, tumor growth and angiogenesis in cancers. CXCR4 is also used as one of the two co-receptors for T-tropic HIV-1 entry into host cells. Therefore, CXCR4 serves as an important therapeutic target for treating cancers and HIV infection. Apart from the CXCL12 endogenous peptide agonist, previous studies suggested that the first 17 amino acids of CXCL12 are sufficient to activate CXCR4. Two 17-residue peptides with positions 1-4 mutated to RSVM and ASLW functioned as super and partial agonists of CXCR4, respectively. However, the mechanism of peptide agonist binding in CXCR4 remains unclear. Here, we have investigated this mechanism through all-atom simulations using a novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) method. The Pep-GaMD simulations have allowed us to explore representative binding conformations of each peptide and identify critical low-energy states of CXCR4 activated by the super versus partial peptide agonists. Our simulations have provided important mechanistic insights into peptide agonist binding in CXCR4, which are expected to facilitate rational design of new peptide modulators of CXCR4 and other chemokine receptors.
Collapse
|