1
|
Lehnertz K. Ordinal methods for a characterization of evolving functional brain networks. CHAOS (WOODBURY, N.Y.) 2023; 33:022101. [PMID: 36859225 DOI: 10.1063/5.0136181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Ordinal time series analysis is based on the idea to map time series to ordinal patterns, i.e., order relations between the values of a time series and not the values themselves, as introduced in 2002 by C. Bandt and B. Pompe. Despite a resulting loss of information, this approach captures meaningful information about the temporal structure of the underlying system dynamics as well as about properties of interactions between coupled systems. This-together with its conceptual simplicity and robustness against measurement noise-makes ordinal time series analysis well suited to improve characterization of the still poorly understood spatiotemporal dynamics of the human brain. This minireview briefly summarizes the state-of-the-art of uni- and bivariate ordinal time-series-analysis techniques together with applications in the neurosciences. It will highlight current limitations to stimulate further developments, which would be necessary to advance characterization of evolving functional brain networks.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; and Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
2
|
Vrijdag XCE, van Waart H, Pullon RM, Sames C, Mitchell SJ, Sleigh JW. EEG functional connectivity is sensitive for nitrogen narcosis at 608 kPa. Sci Rep 2022; 12:4880. [PMID: 35318392 PMCID: PMC8940999 DOI: 10.1038/s41598-022-08869-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
Divers commonly breathe air, containing nitrogen. Nitrogen under hyperbaric conditions is a narcotic gas. In dives beyond a notional threshold of 30 m depth (405 kPa) this can cause cognitive impairment, culminating in accidents due to poor decision making. Helium is known to have no narcotic effect. This study explored potential approaches to developing an electroencephalogram (EEG) functional connectivity metric to measure narcosis produced by nitrogen at hyperbaric pressures. Twelve human participants (five female) breathed air and heliox (in random order) at 284 and 608 kPa while recording 32-channel EEG and psychometric function. The degree of spatial functional connectivity, estimated using mutual information, was summarized with global efficiency. Air-breathing at 608 kPa (experienced as mild narcosis) caused a 35% increase in global efficiency compared to surface air-breathing (mean increase = 0.17, 95% CI [0.09–0.25], p = 0.001). Air-breathing at 284 kPa trended in a similar direction. Functional connectivity was modestly associated with psychometric impairment (mixed-effects model r2 = 0.60, receiver-operating-characteristic area, 0.67 [0.51–0.84], p = 0.02). Heliox breathing did not cause a significant change in functional connectivity. In conclusion, functional connectivity increased during hyperbaric air-breathing in a dose-dependent manner, but not while heliox-breathing. This suggests sensitivity to nitrogen narcosis specifically.
Collapse
Affiliation(s)
- Xavier C E Vrijdag
- Department of Anaesthesiology, School of Medicine, University of Auckland, Private bag 92019, Auckland, 1142, New Zealand.
| | - Hanna van Waart
- Department of Anaesthesiology, School of Medicine, University of Auckland, Private bag 92019, Auckland, 1142, New Zealand
| | - Rebecca M Pullon
- Department of Anaesthesiology, School of Medicine, University of Auckland, Private bag 92019, Auckland, 1142, New Zealand.,Department of Anaesthesia, Waikato Hospital, Hamilton, 3240, New Zealand
| | - Chris Sames
- Slark Hyperbaric Unit, Waitemata District Health Board, Auckland, 0610, New Zealand
| | - Simon J Mitchell
- Department of Anaesthesiology, School of Medicine, University of Auckland, Private bag 92019, Auckland, 1142, New Zealand.,Slark Hyperbaric Unit, Waitemata District Health Board, Auckland, 0610, New Zealand.,Department of Anaesthesia, Auckland City Hospital, Auckland, 1023, New Zealand
| | - Jamie W Sleigh
- Department of Anaesthesiology, School of Medicine, University of Auckland, Private bag 92019, Auckland, 1142, New Zealand.,Department of Anaesthesia, Waikato Hospital, Hamilton, 3240, New Zealand
| |
Collapse
|
3
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
4
|
Boduliev O, Shkurupii D. Anesthesia and sleep disorders – a new problem in modern anesthesiology (literature review). PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v4i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sleep is an active state that is as complex as wakefulness. The main tasks of sleep are the adaptation and restoration of physical and mental strength.
Sleep regulation is a complex multimodal process involving not only neurotransmitters, but also releasingfactors, hormones, cytokines, signaling molecules and metabolites.
Having a lot of physiological effects, postoperative sleep plays a role not only in quality of life, but also in the recovery of the patient.
The characteristics of the patient, the type of surgical intervention, the methods of anesthesia and their interaction affects postoperative sleep, but the relationship and the level of influence of these factors are not clear. Therefore, given the high prevalence of postoperative insomnia, this problem is relevant for modern anesthesiology.
Collapse
|