1
|
Sur S, Ghosh A. Quantum Advantage of Thermal Machines with Bose and Fermi Gases. ENTROPY (BASEL, SWITZERLAND) 2023; 25:372. [PMID: 36832738 PMCID: PMC9955716 DOI: 10.3390/e25020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In this article, we show that a quantum gas, a collection of massive, non-interacting, indistinguishable quantum particles, can be realized as a thermodynamic machine as an artifact of energy quantization and, hence, bears no classical analog. Such a thermodynamic machine depends on the statistics of the particles, the chemical potential, and the spatial dimension of the system. Our detailed analysis demonstrates the fundamental features of quantum Stirling cycles, from the viewpoint of particle statistics and system dimensions, that helps us to realize desired quantum heat engines and refrigerators by exploiting the role of quantum statistical mechanics. In particular, a clear distinction between the behavior of a Fermi gas and a Bose gas is observed in one dimension, rather than in higher dimensions, solely due to the innate differences in their particle statistics indicating the conspicuous role of a quantum thermodynamic signature in lower dimensions.
Collapse
Affiliation(s)
- Saikat Sur
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Ghosh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
2
|
Wang T, Ge Y, Chen L, Feng H, Yu J. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. ENTROPY 2021; 23:e23101285. [PMID: 34682008 PMCID: PMC8534701 DOI: 10.3390/e23101285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.
Collapse
Affiliation(s)
- Tan Wang
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence:
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiuyang Yu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
3
|
Gong Q, Ge Y, Chen L, Shi S, Feng H. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. ENTROPY 2021; 23:e23091203. [PMID: 34573828 PMCID: PMC8471157 DOI: 10.3390/e23091203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Based on the established model of the irreversible rectangular cycle in the previous literature, in this paper, finite time thermodynamics theory is applied to analyze the performance characteristics of an irreversible rectangular cycle by firstly taking power density and effective power as the objective functions. Then, four performance indicators of the cycle, that is, the thermal efficiency, dimensionless power output, dimensionless effective power, and dimensionless power density, are optimized with the cycle expansion ratio as the optimization variable by applying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective, three-objective, and two-objective optimization combinations. Finally, optimal results are selected through three decision-making methods. The results show that although the efficiency of the irreversible rectangular cycle under the maximum power density point is less than that at the maximum power output point, the cycle under the maximum power density point can acquire a smaller size parameter. The efficiency at the maximum effective power point is always larger than that at the maximum power output point. When multi-objective optimization is performed on dimensionless power output, dimensionless effective power, and dimensionless power density, the deviation index obtained from the technique for order preference by similarity to an ideal solution (TOPSIS) decision-making method is the smallest value, which means the result is the best.
Collapse
Affiliation(s)
- Qirui Gong
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshaung Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|