1
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
2
|
Jędrzejewska-Szmek J, Dorman DB, Blackwell KT. Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 2023; 83:102804. [PMID: 37913687 PMCID: PMC10842147 DOI: 10.1016/j.conb.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.
Collapse
Affiliation(s)
- Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Science, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | - Daniel B Dorman
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, 21218, MD, USA
| | - Kim T Blackwell
- Bioengineering Department and Interdisciplinary Program in Neuroscience, George Mason University, 4400 University Drive, Fairfax, 22031, VA, USA
| |
Collapse
|
3
|
Nano-scale solution of the Poisson-Nernst-Planck (PNP) equations in a fraction of two neighboring cells reveals the magnitude of intercellular electrochemical waves. PLoS Comput Biol 2023; 19:e1010895. [PMID: 36791152 PMCID: PMC9974139 DOI: 10.1371/journal.pcbi.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/28/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The basic building blocks of the electrophysiology of cardiomyocytes are ion channels integrated in the cell membranes. Close to the ion channels there are very strong electrical and chemical gradients. However, these gradients extend for only a few nano-meters and are therefore commonly ignored in mathematical models. The full complexity of the dynamics is modelled by the Poisson-Nernst-Planck (PNP) equations but these equations must be solved using temporal and spatial scales of nano-seconds and nano-meters. Here we report solutions of the PNP equations in a fraction of two abuttal cells separated by a tiny extracellular space. We show that when only the potassium channels of the two cells are open, a stationary solution is reached with the well-known Debye layer close to the membranes. When the sodium channels of one of the cells are opened, a very strong and brief electrochemical wave emanates from the channels. If the extracellular space is sufficiently small and the number of sodium channels is sufficiently high, the wave extends all the way over to the neighboring cell and may therefore explain cardiac conduction even at very low levels of gap junctional coupling.
Collapse
|
4
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. Electrosorption of phenolic compounds from olive mill wastewater: Mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128480. [PMID: 35183056 DOI: 10.1016/j.jhazmat.2022.128480] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However, their properties have good health effects at suitable doses. For the first time, the electrosorption of PCs from actual OMWW has been proposed for their possible recovery as value-added compounds, while decontaminating OMWW. A bio-sourced alginate-activated carbon (AC) fixed-bed electrode was prepared based on the reuse of olive pomace solid waste as powdered AC. At the optimal AC content (1% w/v), the internal ohmic drop voltage was lower (2.26 V) and the mass transport coefficient was higher (9.7 10-5 m s-1) along with the diffusivity (7.3 10-9 m2 s-1), which led to enhanced electrosorption rates. Afterward, an optimal electrode potential was obtained (-1.1 V vs. Ag/AgCl), while higher voltages led to faradaic reactions. Moreover, the adsorption capacity was lower (123 mg g-1) than that of electrosorption (170 mg g-1) and was even higher (307 mg g-1) with actual effluents. This was probably due to the influence of electromigration, which was confirmed by new models that could predict the electrosorption kinetics well considering mass transport and acid dissociation constants.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | |
Collapse
|