1
|
Sundaresan S, Vijaikanth V. Recent advances in electrochemical detection of common azo dyes. Forensic Toxicol 2024:10.1007/s11419-024-00696-y. [PMID: 39093537 DOI: 10.1007/s11419-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Food forensics is an emerging field and the initial part of this review showcases the toxic effects and the instrumental methods applied for the detection of the most commonly used azo dyes. Electrochemical detection has a lot of advantages and hence the significance of the most important techniques used in the electrochemical detection is discussed. The major part of this review highlights the surface modified electrodes, utilized for the detection of the most important azo dyes to achieve low detection limit (LOD). METHODS A thorough literature study was conducted using scopus, science direct and other scientific databases using specific keywords such as toxic azo dyes, electrochemical detection, modified electrodes, LOD etc. The recent references in this field have been included. RESULTS From the published literature, it is observed that with the growing interests in the field of electrochemical techniques, a lot of importance have been given in the area of modifying the working electrodes. The results unambiguously show that the modified electrodes outperform bare electrodes and offer a lower LOD value. CONCLUSION According to the literature reports it can be concluded that, compared to other detection methods, electrochemical techniques are much dependable and reproducible. The fabrication of the electrode material with the appropriate modifications is the main factor that influences the sensitivity. Electrochemical sensors can be designed to be more sensitive, more reliable, and less expensive. These sensors can be effectively used by toxicologists to detect trace amounts of harmful dyes in food samples.
Collapse
Affiliation(s)
- Sumi Sundaresan
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Vijendran Vijaikanth
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| |
Collapse
|
2
|
Abd-Elsabour M, Abou-Krisha M, Alhamzani AG, Alotaibi AN, Yousef TA. Voltametric Sensor Based on Magnetic Chitosan Acetylindole-Based Nanocomposite for the Determination of Sulfamethazine. ACS OMEGA 2024; 9:17323-17333. [PMID: 38645363 PMCID: PMC11024945 DOI: 10.1021/acsomega.3c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Sulfamethazine (SMZ), a persistent antibiotic, is frequently detected in drinking water and milk. For this reason, our research aimed to develop a novel electrochemical sensor based on a magnetic nanocomposite supported on chitosan modified by 3-acetylindole through the formation of chitosan acetylindole Schiff base (Chs-Aci). The objective was to detect extremely low concentrations of SMZ in milk. The synthesized nanocomposites were characterized by various techniques, including FT-IR, XRD, EDX, SEM, and TEM. To enhance the electrocatalytic efficiency for sensitive SMZ detection in food samples, a magnetic chitosan acetylindole nanocomposite (M-Chs-Aci) was employed as a modifier for a carbon paste electrode (CPE). The electrochemical measurements revealed that the M-Chs-Aci/CPE exhibits good electrocatalytic performance compared to a bare CPE. Moreover, low detection limit, repeatability, and stability were achieved at 0.021 μM, 3.83%, and 94.87%, respectively. Finally, the proposed M-Chs-Aci/CPE proved to be highly effective in detecting SMZ in milk samples. The obtained findings paved the way for the effective usability of M-Chs-Aci/CPE as a sensor for detecting SMZ in real samples, with acceptable recoveries of 95%-98.87%.
Collapse
Affiliation(s)
| | - Mortaga
M. Abou-Krisha
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry
Department, Faculty of Science, South Valley
University, Luxor 85951, Egypt
| | - Abdulrahman G. Alhamzani
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah N. Alotaibi
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tarek A. Yousef
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department
of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Cairo 11435, Egypt
| |
Collapse
|
3
|
Kny E, Hasler R, Luczak W, Knoll W, Szunerits S, Kleber C. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 2024; 416:2247-2259. [PMID: 38006442 DOI: 10.1007/s00216-023-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.
Collapse
Affiliation(s)
- Erich Kny
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roger Hasler
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wiktor Luczak
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
4
|
Golestaneh M. Applicability of a graphene oxide nanocomposite for fabrication of an electrochemical sensor for simultaneous detection of sunset yellow and rhodamine B in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5500-5509. [PMID: 37843022 DOI: 10.1039/d3ay01373a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Developing a sensitive portable sensor for the determination of food additives is very important. Herein, a simple and sensitive electrochemical sensor has been constructed based on a carbon paste electrode (CPE) modified with graphene oxide (GO) nanosheets for the simultaneous determination of sunset yellow (SY) and rhodamine B (RhB) in phosphate buffer solution (pH = 4). The cyclic and differential pulse voltammetry (CV and DPV) results revealed two well-resolved anodic peaks for SY and RhB with a remarkable increase in oxidation signals of these colorants. Based on this, an electrochemical method was developed for the first time for the simultaneous detection of SY and RhB. Applicability of the sensor was confirmed in various concentrations of two analytes in two linear ranges of 1-20 μM for SY and 1-30 μM for RhB with a limit of detection (LOD) of 10.0 nM and 20.0 nM, respectively. Furthermore, the proposed sensor was successfully employed for the simultaneous detection of SY and RhB in food samples with recoveries of 93.1-106.0% indicating promising potential in practical application.
Collapse
Affiliation(s)
- Mahshid Golestaneh
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
5
|
Zahran M, Beltagi AM, Rabie M, Maher R, Hathoot AA, Azzem MA. Biosynthesized silver nanoparticles for electrochemical detection of bromocresol green in river water. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221621. [PMID: 37564062 PMCID: PMC10410218 DOI: 10.1098/rsos.221621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
In this study, silver nanoparticles (AgNPs)-based electrochemical sensor has been reported for assessing bromocresol green (BG) in river water. Firstly, AgNPs were greenly produced using the aqueous extract of Ficus sycomorus leaves. Then, the AgNP-modified glassy carbon (GC) electrode was prepared using the sticking method. AgNPs were characterized using transmission electron microscope (TEM), X-ray diffraction (XRD), square wave voltammetry (SWV) and scanning electron microscope (SEM). TEM and SEM were used for determining the size of AgNPs before and after adsorption, respectively. The results show that there was an increase in AgNP size from 20 to 30 nm. Additionally, XRD was used for characterizing the crystal nature of AgNPs, while SWV exhibited a characteristic oxidation peak of AgNPs at 0.06 V. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for characterizing the catalytic effect of AgNPs. BG as a targeted pollutant was detected at AgNPs/GC based on its oxidation through proton and electron transfer. Two peaks corresponding to the monomer and polymer oxidation were detected. The monomer- and polymer-based sensors have revealed a linear range of 2.9 × 10-5 to 2.1 × 10-4 mole l-1 and low detection limits (LODs) of 1.5 × 10-5 and 1.3 × 10-5 mole l-1, respectively.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater, Menoufia 32514, Egypt
| | - Amr Mohamed Beltagi
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahmoud Rabie
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Reham Maher
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Abla Ahmed Hathoot
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| | - Magdi Abdel Azzem
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom 32512, Egypt
| |
Collapse
|
6
|
Vargas‐Varela A, Cardenas‐Riojas AA, Nagles E, Hurtado J. Detection of Allura Red in Food Samples Using Carbon Paste Modified with Lanthanum and Titanium Oxides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anthony Vargas‐Varela
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | | | - Edgar Nagles
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | - John Hurtado
- Departamento de Química Universidad de los Andes Bogotá Colombia
| |
Collapse
|
7
|
Traditional Knowledge of Textile Dyeing Plants: A Case Study in the Chin Ethnic Group of Western Myanmar. DIVERSITY 2022. [DOI: 10.3390/d14121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional knowledge of the plants used for textile dyeing is disappearing due to the utilization of synthetic dyes. Recently, natural products made from plants have gained global interest. Thus, preserving traditional knowledge of textile dyeing plants is crucial. Here, we documented this knowledge by interviewing 2070 informants from 14 communities of the Chin ethnic group of Myanmar. The Chin communities we interviewed used a total of 32 plant species for textile dyeing from 29 genera in 24 families. Chromolaena odorata, Lithocarpus fenestratus, and L. pachyphyllus were the most important dye species. The most common responses described dyes that were red in color, produced from leaves, derived from tree species, collected from the wild, and used as firewood ash as a mordant to fix the dye to the fabrics. According to the IUCN Red List of threatened species, one species was registered as Data Deficient, 20 species still needed to be categorized, and 11 species were categorized as Least Concern. This study will help re-establish the use of natural dyes, encourage the cultural integrity of the indigenous people, and serve as an example for other communities to preserve their traditional knowledge of plant textile dyes.
Collapse
|
8
|
Harini H, Nagaswarupa H, Tilahun Bekele E, Murthy HA, Ravikumar C. Novel synthesis of Cu2ZnAl2O4 nanostructures for photocatalytic and electrochemical sensor applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
Marahel F, Niknam L. Application electrochemical sensor based on nanosheets G-C 3N 4/CPE by square-wave anodic stripping voltammetric for measure amounts of toxic tartrazine color residual in different drink and foodstuffs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:489-496. [PMID: 35435151 DOI: 10.1080/03601234.2022.2064676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present work describes a method (SWASV) techniques for measure of tartrazine color a harmful compound present in real samples, and the extremely harmful to humans and animals even at low concentrations using G-C3N4 nanosheets sensor. Here, we report the use of an electrochemical approach for analytical determination of toxic tartrazine that takes 150 s. The calibration curve was linear in range of the (0.02-18.0 µmol L-1). The current response was linearly proportional to the tartrazine concentration with a R2∼ 0.999. We demonstrated a sensitivity a limit of detection of (0.022 µmol L-1). Finally, sensor nanosheets G-C3N4/CPE introduced to measure toxic tartrazine in different drink and foodstuff samples was used and the chemical nanosheets G-C3N4/CPE sensor made it possible as an excellent sensor with reproducibility for determination other samples.
Collapse
Affiliation(s)
- Farzaneh Marahel
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Leila Niknam
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| |
Collapse
|
10
|
Electrocatalytic Analysis of Diclofenac in the Presence of Dopamine at Surface Amplified Voltammetric Sensor Based on Poly Glycine Modified Carbon Nano Tube Paste Electrode. Top Catal 2022. [DOI: 10.1007/s11244-022-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Souza MB, Santos JS, Pontes MS, Nunes LR, Oliveira IP, Lopez Ayme AJ, Santiago EF, Grillo R, Fiorucci AR, Arruda GJ. CeO 2 nanostructured electrochemical sensor for the simultaneous recognition of diethylstilbestrol and 17β-estradiol hormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150348. [PMID: 34818759 DOI: 10.1016/j.scitotenv.2021.150348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A new highly sensitive, selective, and inexpensive electrochemical method has been developed for simultaneously detecting diethylstilbestrol (DES) and 17β-estradiol (E2) in environmental samples (groundwater and lake water) using a graphite sensor modified by cerium oxide nanoparticles (CPE-CeO2 NPs). The developed sensor and the materials used in its preparation were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The ab initio simulation was used to evaluate the adsorption energies between both DES and E2 with the surface of the sensor. The peak current of oxidation of both hormones showed two regions of linearity. The region of greatest sensitivity was observed for the linear range of 10 nM-100 nM. The detection and quantification limits for this concentration range were 0.8/2.6 nM and 1.3/4.3 nM for DES and E2, respectively. The analytical performance of the developed method showed high sensitivity, precision, repeatability, reproducibility, and selectivity. The CPE-CeO2 NPs sensor was successfully applied to simultaneously detect DES and E2 in real samples with recovery levels above 98%.
Collapse
Affiliation(s)
- Matheus B Souza
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Jaqueline S Santos
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Montcharles S Pontes
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Letícia R Nunes
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Ivan P Oliveira
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 1374, Butantã, 05508-900 São Paulo, SP, Brazil
| | - Alvaro J Lopez Ayme
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Rua Josué de Castro, s/n, Cidade Universitária, 13083-970 Campinas, SP, Brazil
| | - Etenaldo F Santiago
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Renato Grillo
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista (UNESP), Avenida Brasil, 56, Centro, 15385-000 Ilha Solteira, SP, Brazil
| | - Antonio R Fiorucci
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil
| | - Gilberto J Arruda
- Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul (UEMS), P.O. Box 351, Dourados, MS CEP 79804-970, Brazil.
| |
Collapse
|