1
|
Amado-Rey AB, Goncalves Seabra AC, Stieglitz T. Towards Ultrasound Wearable Technology for Cardiovascular Monitoring: From Device Development to Clinical Validation. IEEE Rev Biomed Eng 2025; 18:93-112. [PMID: 38843059 DOI: 10.1109/rbme.2024.3410399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The advent of flexible, compact, energy-efficient, robust, and user-friendly wearables has significantly impacted the market growth, with an estimated value of 61.30 billion USD in 2022. Wearable sensors have revolutionized in-home health monitoring by warranting continuous measurements of vital parameters. Ultrasound is used to non-invasively, safely, and continuously record vital parameters. The next generation of smart ultrasonic devices for healthcare integrates microelectronics with flexible, stretchable patches and body-conformable devices. They offer not only wearability, and user comfort, but also higher tracking accuracy of immediate changes of cardiovascular parameters. Moreover, due to the fixed adhesion to the skin, errors derived from probe placement or patient movement are mitigated, even though placement at the correct anatomical location is still critical and requires a user's skill and knowledge. In this review, the steps required to bring wearable ultrasonic systems into the medical market (technologies, device development, signal-processing, in-lab validation, and, finally, clinical validation) are discussed. The next generation of vascular ultrasound and its future research directions offer many possibilities for modernizing vascular health assessment and the quality of personalized care for home and clinical monitoring.
Collapse
|
2
|
Li Y, Yu R, Liu Z, Gao Y, Tang C, Li Q, Yuan C. Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching. SENSORS (BASEL, SWITZERLAND) 2025; 25:293. [PMID: 39860663 PMCID: PMC11768287 DOI: 10.3390/s25020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
This paper presents the design and performance evaluation of an inductive conductivity sensor with a double tuning impedance matching network to enhance sensitivity and improve linearity. The sensor's equivalent circuit model is analyzed and verified through simulation, and impedance matching is shown to significantly increase the sensor's output signal, particularly at low conductivity measurements. Double tuning impedance matching expands the frequency response range and optimizes power transfer efficiency, achieving a higher power factor across a broader frequency range. Experimental results confirm that the sensor's sensitivity increases by approximately 30% after impedance matching with optimal performance at a frequency of 9865 Hz. Furthermore, while the impedance matching improves sensitivity, it also introduces some nonlinear errors, which are evaluated using a performance function that balances sensitivity and linearity. The results demonstrate that impedance matching enhances the sensor's measurement capability, making it more effective in practical applications where conductivity changes need to be accurately monitored across varying frequencies.
Collapse
Affiliation(s)
- Yang Li
- EHV Transmission Companies Dali Office of China Southern Power Grid Co., Ltd., Dali 671000, China; (Y.L.); (R.Y.); (Z.L.); (Y.G.)
| | - Rongxing Yu
- EHV Transmission Companies Dali Office of China Southern Power Grid Co., Ltd., Dali 671000, China; (Y.L.); (R.Y.); (Z.L.); (Y.G.)
| | - Zhiqiang Liu
- EHV Transmission Companies Dali Office of China Southern Power Grid Co., Ltd., Dali 671000, China; (Y.L.); (R.Y.); (Z.L.); (Y.G.)
| | - Yujie Gao
- EHV Transmission Companies Dali Office of China Southern Power Grid Co., Ltd., Dali 671000, China; (Y.L.); (R.Y.); (Z.L.); (Y.G.)
| | - Chengxu Tang
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; (C.T.); (Q.L.)
| | - Qiao Li
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; (C.T.); (Q.L.)
| | - Chao Yuan
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; (C.T.); (Q.L.)
| |
Collapse
|
3
|
Ma Y, Jiang Y, Li C. A Universal Model for Ultrasonic Energy Transmission in Various Media. SENSORS (BASEL, SWITZERLAND) 2024; 24:6230. [PMID: 39409270 PMCID: PMC11479197 DOI: 10.3390/s24196230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. Existing models focus on feasibility and numerical analysis but lack an effective link between input and output power in different media applications. The proposed model fills this gap by incorporating key factors of link loss, including resonant frequency, impedance matching, acoustic coupling, and boundary conditions, to predict energy transfer efficiency more accurately. The model is validated through numerical simulations and experimental tests in air, metal, and underwater environments. An error analysis has shown that the maximum error between theoretical and experimental responses is 3.11% (air), 27.37% (water), and 1.76% (aluminum). This research provides valuable insights into UET dynamics and offers practical guidelines for developing efficient wireless powering solutions for sensors in difficult-to-access or electromagnetically shielded conditions.
Collapse
Affiliation(s)
| | | | - Chong Li
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; (Y.M.); (Y.J.)
| |
Collapse
|
4
|
Vafaie MH, Ahmadi Beni E. Wireless Patient Monitoring System Based on Smart Wristbands and Central user Interface Software. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:3. [PMID: 38510672 PMCID: PMC10950310 DOI: 10.4103/jmss.jmss_47_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2024]
Abstract
In this article, a patient monitoring system is proposed that is able to obtain heart rate and oxygen saturation (SpO2) levels of patients, identify abnormal conditions, and inform emergency status to the nurses. The proposed monitoring system consists of smart patient wristbands, smart nurse wristbands, central monitoring user interface (UI) software, and a wireless communication network. In the proposed monitoring system, a unique smart wristband is dedicated to each of the patients and nurses. To measure heart rate and SpO2 level, a pulse oximeter sensor is used in the patient wristbands. The output of this sensor is transferred to the wristband's microcontroller where heart rate and SpO2 are calculated through advanced signal processing algorithms. Then, the calculated values are transmitted to central UI software through a wireless network. In the UI software, received values are compared with their normal values and a predefined message is sent to the nurses' wristband if an abnormal condition is identified. Whenever this message is received by a nurse's wristband, an acoustic alarm with vibration is generated to inform an emergency status to the nurse. By doing so, health services are delivered to the patients more quickly and as a result, the probability of the patient recovery is increased effectively.
Collapse
Affiliation(s)
- Mohammad Hossein Vafaie
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Ahmadi Beni
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Brzezińska D, Bochenek D, Niemiec P, Dercz G. Properties of PBZTS Ferroelectric Ceramics Obtained Using Spark Plasma Sintering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5756. [PMID: 37687449 PMCID: PMC10488608 DOI: 10.3390/ma16175756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
In this paper, spark plasma sintering was used to obtain and investigate (Pb0.97Ba0.03)(Zr0.98Ti0.02)1-xSnxO3 (PBZTS) ceramic materials for x = 0, 0.02, 0.04, 0.06, and 0.08. Crystal structure, microstructure, dielectric and ferroelectric properties, and electrical conductivity tests of a series of samples were carried out. The SPS sintering method ensures favorable dielectric and ferroelectric properties of PBZTS ceramic materials. X-ray studies have shown that the material has a perovskite structure. The samples have a densely packed material structure with properly crystallized grains. The fine-grained microstructure of the PZBZTS material with high grain homogeneity allows the application of higher electric fields. Ceramic samples obtained by the SPS method have higher density values than samples obtained by the classical method (FS). The permittivity at room temperature is in the range of 245-282, while at the phase transition temperature is in the range of 10,259-12,221. At room temperature, dielectric loss factor values range from 0.006 to 0.036. The hysteresis loops of PBZTS ceramics have a shape typical for ferroelectric hard materials, and the remnant polarization values range from 0.32 to 0.39 µC/cm2. The activation energy Ea values of the PBZTS samples result mainly from the presence of oxygen vacancies. The PZT material doped with Ba and Sn and sintered via the SPS method has favorable physical parameters for applications in modern devices such as actuators or pulse capacitors.
Collapse
Affiliation(s)
- Dagmara Brzezińska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1 A, 41-500 Chorzów, Poland; (D.B.); (P.N.); (G.D.)
| | | | | | | |
Collapse
|
6
|
Feng Y, Zhao Y, Yan H, Cai H. A Driving Power Supply for Piezoelectric Transducers Based on an Improved LC Matching Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:5745. [PMID: 37420910 PMCID: PMC10301953 DOI: 10.3390/s23125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
In the ultrasonic welding system, the ultrasonic power supply drives the piezoelectric transducer to work in the resonant state to realize the conversion of electrical energy into mechanical energy. In order to obtain stable ultrasonic energy and ensure welding quality, this paper designs a driving power supply based on an improved LC matching network with two functions, frequency tracking and power regulation. First, in order to analyze the dynamic branch of the piezoelectric transducer, we propose an improved LC matching network, in which three voltage RMS values are used to analyze the dynamic branch and discriminate the series resonant frequency. Further, the driving power system is designed using the three RMS voltage values as feedback. A fuzzy control method is used for frequency tracking. The double closed-loop control method of the power outer loop and the current inner loop is used for power regulation. Through MATLAB software simulation and experimental testing, it is verified that the power supply can effectively track the series resonant frequency and control the power while being continuously adjustable. This study has promising applications in ultrasonic welding technology with complex loads.
Collapse
Affiliation(s)
| | - Yang Zhao
- Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China; (Y.F.); (H.Y.); (H.C.)
| | | | | |
Collapse
|
7
|
Balasubramanian PS, Lal A. GHz ultrasonic sensor for ionic content with high sensitivity and localization. iScience 2023; 26:106907. [PMID: 37305695 PMCID: PMC10250832 DOI: 10.1016/j.isci.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Sensing the ionic content of a solution at high spatial and temporal resolution and sensitivity is a challenge in nanosensing. This paper describes a comprehensive investigation of the possibility of GHz ultrasound acoustic impedance sensors to sense the content of an ionic aqueous medium. At the 1.55 GHz ultrasonic frequency used in this study, the micron-scale wavelength and the decay lengths in liquid result in a highly localized sense volume with the added potential for high temporal resolution and sensitivity. The amplitude of the back reflected pulse is related to the acoustic impedance of the medium and a function of ionic species concentration of the KCl, NaCl, and CaCl2 solutions used in this study. A concentration sensitivity as high as 1 mM and concentration detection range of 0 to 3 M was achieved. These bulk acoustic wave pulse-echo acoustic impedance sensors can also be used to record dynamic ionic flux.
Collapse
Affiliation(s)
| | - Amit Lal
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
9
|
Kim TH, Kang D, Kim JN, Park IK. Through-Silicon via Device Non-Destructive Defect Evaluation Using Ultra-High-Resolution Acoustic Microscopy System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:860. [PMID: 36676597 PMCID: PMC9860617 DOI: 10.3390/ma16020860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this study, an ultra-high-resolution acoustic microscopy system capable of non-destructively evaluating defects that may occur in thin film structures was fabricated. It is an integrated system of the control module, activation module, and data acquisition system, in which an integrated control software for controlling each module was developed. The control module includes the mechanical, control, and ultrasonic parts. The activation module was composed of the pulser/receiver, and the data acquisition system included an A/D board. In addition, the integrated control software performs system operation and material measurement and includes an analysis program to analyze the obtained A-Scan signals in various ways. A through-silicon via (TSV) device, which is a semiconductor structure, was prepared to verify the performance of the developed system. The TSV device was analyzed using an ultra-high-resolution acoustic microscope. When the C-Scan images were analyzed, void defects with a size of 20 μm were detected at a depth of approximately 32.5 μm. A similar result could be confirmed when the cross section was measured using focused ion beam (FIB) microscopy.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Dongchan Kang
- SeoulTech NDT Research Center (SNDT), Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jeong Nyeon Kim
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Ik Keun Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
10
|
Thibbotuwa UC, Cortés A, Irizar A. Small Ultrasound-Based Corrosion Sensor for Intraday Corrosion Rate Estimation. SENSORS (BASEL, SWITZERLAND) 2022; 22:8451. [PMID: 36366152 PMCID: PMC9653950 DOI: 10.3390/s22218451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The conventional way of studying corrosion in marine environments is by installing corrosion coupons. Instead, this paper presents an experimental field study using an unattended corrosion sensor developed on the basis of ultrasound (US) technology to assess the thickness loss caused by general atmospheric corrosion on land close to the sea (coastal region). The system described here uses FPGA, low-power microcontroller, analog front-end devices in the sensor node, and a Beaglebone black wireless board for posting data to a server. The overall system is small, operates at low power, and was deployed at Gran Canaria to detect the thickness loss of an S355 steel sample and consequently estimate the corrosion rate. This experiment aims to demonstrate the system's viability in marine environments and its potential to monitor corrosion in offshore wind turbines. In a day, the system takes four sets of measurements in 6 hour intervals, and each set consists of 5 consecutive measurements. Over the course of 5 months, the proposed experiment allowed for us to continuously monitor the corrosion rate in an equivalent corrosion process to an average thickness loss rate of 0.134 mm/year.
Collapse
Affiliation(s)
| | - Ainhoa Cortés
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal 15, 20018 Donostia-San Sebastián, Spain
- Department of Electronics and Communications, Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia-San Sebastián, Spain
| | - Andoni Irizar
- CEIT-Basque Research and Technology Alliance (BRTA), Manuel Lardizabal 15, 20018 Donostia-San Sebastián, Spain
- Department of Electronics and Communications, Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
11
|
Lickert F, Bruus H, Rossi M. Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications. MICROMACHINES 2022; 13:1886. [PMID: 36363908 PMCID: PMC9695504 DOI: 10.3390/mi13111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Supplying a piezoelectric transducer with constant voltage or constant power during a frequency sweep can lead to different results in the determination of the acoustofluidic resonance frequencies, which are observed when studying the acoustophoretic displacements and velocities of particles suspended in a liquid-filled microchannel. In this work, three cases are considered: (1) Constant input voltage into the power amplifier, (2) constant voltage across the piezoelectric transducer, and (3) constant average power dissipation in the transducer. For each case, the measured and the simulated responses are compared, and good agreement is obtained. It is shown that Case 1, the simplest and most frequently used approach, is largely affected by the impedance of the used amplifier and wiring, so it is therefore not suitable for a reproducible characterization of the intrinsic properties of the acoustofluidic device. Case 2 strongly favors resonances at frequencies yielding the lowest impedance of the piezoelectric transducer, so small details in the acoustic response at frequencies far from the transducer resonance can easily be missed. Case 3 provides the most reliable approach, revealing both the resonant frequency, where the power-efficiency is the highest, as well as other secondary resonances across the spectrum.
Collapse
Affiliation(s)
- Fabian Lickert
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Massimiliano Rossi
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci Rep 2022; 12:16174. [PMID: 36171230 PMCID: PMC9519918 DOI: 10.1038/s41598-022-19693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Wireless power transfer is one of the enabling technologies for powering implantable biomedical devices. Biocompatibility and CMOS compatibility of wireless power transfer devices are highly desired due to safety and footprint concerns. Toward implantable applications, this paper presents an ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducer (PMUT). The wireless power supply integrates wireless power transfer, power management and energy storage functions. The PMUT array is used as a passive wireless power receiver, followed by electrical impedance matching networks and a voltage multiplier for efficient power transmission and rectification. The output power intensity of the wireless receiver reaches 7.36 μW/mm2 with an incident ultrasound power below the FDA safety limit. The output power of the wireless power supply reaches 18.8 μW and a 100-μF capacitor is fully charged to 3.19 V after power management, which are sufficient to power many low-power implantable biomedical devices such as for neural electrical stimulation, biosensors and intrabody communication applications. The wireless power supply is implemented in a PCB with a diameter of 1 cm. With biocompatibility and CMOS compatibility of AlN thin film compared to commonly used PZT, the proposed solution paves the way for safer and ultraminiaturized wireless power supplies with further development incorporating all the functions on a monolithic chip in the future.
Collapse
|
13
|
Moon J, Park S, Lim S. A Novel High-Speed Resonant Frequency Tracking Method Using Transient Characteristics in a Piezoelectric Transducer. SENSORS (BASEL, SWITZERLAND) 2022; 22:6378. [PMID: 36080839 PMCID: PMC9460266 DOI: 10.3390/s22176378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 05/30/2023]
Abstract
When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.
Collapse
Affiliation(s)
| | - Sungjun Park
- Department of Electrical Engineering, University of Chonnam National, Gwangju 61186, Korea
| | - Sangkil Lim
- Department of Automotive Engineering, University of Honam, Gwangju 62399, Korea
| |
Collapse
|
14
|
Agarwal P, Huang L, Ter Lim S, Singh R. Electric-field control of nonlinear THz spintronic emitters. Nat Commun 2022; 13:4072. [PMID: 35835753 PMCID: PMC9283400 DOI: 10.1038/s41467-022-31789-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Energy-efficient spintronic technology holds tremendous potential for the design of next-generation processors to operate at terahertz frequencies. Femtosecond photoexcitation of spintronic materials generates sub-picosecond spin currents and emission of terahertz radiation with broad bandwidth. However, terahertz spintronic emitters lack an active material platform for electric-field control. Here, we demonstrate a nonlinear electric-field control of terahertz spin current-based emitters using a single crystal piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) that endows artificial magnetoelectric coupling onto a spintronic terahertz emitter and provides 270% modulation of the terahertz field at remnant magnetization. The nonlinear electric-field control of the spins occurs due to the strain-induced change in magnetic energy of the ferromagnet thin-film. Results also reveal a robust and repeatable switching of the phase of the terahertz spin current. Electric-field control of terahertz spintronic emitters with multiferroics and strain engineering offers opportunities for the on-chip realization of tunable energy-efficient spintronic-photonic integrated platforms.
Collapse
Affiliation(s)
- Piyush Agarwal
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Center for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lisen Huang
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, Singapore, 138364, Singapore
| | - Sze Ter Lim
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, Singapore, 138364, Singapore
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
- Center for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
15
|
Khan M, Khan TM. Tunable Q matching networks for capacitive ultrasound transmitters. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING 2022; 111:301-312. [DOI: 10.1007/s10470-021-01857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 09/01/2023]
|
16
|
Rothlisberger M, Schuck M, Kolar JW. Kilohertz-Frequency Rotation of Acoustically Levitated Particles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1528-1534. [PMID: 35120003 DOI: 10.1109/tuffc.2022.3149131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The achievable rotational frequency of acoustically levitated particles is limited by the suspension stability and the achievable driving torque. In this work, a spherical ring arrangement of piezoelectric transducers and an improved excitation concept are presented to increase the rotational speed of an acoustically levitated particle by more than a factor of 10 compared to previously published results. A maximum rotational frequency of 3.6 kHz using asymmetric expanded polystyrene (EPS) particles is demonstrated. At such rotational speeds, high-frequency resonances of the transducers cause disturbances of the acoustic field which present a previously unexplored limit to the achievable manipulation rate of the particle. This limit is investigated in this work by means of calculations based on an analytical model and high precision measurements of the transducer characteristics beyond the conventional frequency range.
Collapse
|
17
|
Qiu Z, Lu Y, Qiu Z. Review of Ultrasonic Ranging Methods and Their Current Challenges. MICROMACHINES 2022; 13:520. [PMID: 35457823 PMCID: PMC9025471 DOI: 10.3390/mi13040520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Ultrasonic ranging has been widely used in automobiles, unmanned aerial vehicles (UAVs), robots and other fields. With the appearance of micromachined ultrasonic transducers (MUTs), the application of ultrasonic ranging technology presents a more extensive trend. This review focuses on ultrasonic ranging technology and its development history and future trend. Going through the state-of-the-art ultrasonic ranging methods, this paper covers the principles of each method, the signal processing methodologies, the overall system performance as well as key ultrasonic transducer parameters. Moreover, the error sources and compensation methods of ultrasonic ranging systems are discussed. This review aims to give an overview of the ultrasonic ranging technology including its current development and challenges.
Collapse
Affiliation(s)
- Zurong Qiu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
| | - Yaohuan Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
| | - Zhen Qiu
- School of Engineering, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
18
|
Kargar SM, Hao G. An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:1949. [PMID: 35271095 PMCID: PMC8914662 DOI: 10.3390/s22051949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, a large number of sensors are employed in the oceans to collect data for further analysis, which leads to a large number of demands for battery elimination in electronics due to the size reduction, environmental issues, and its laborious, pricy, and time-consuming recharge or replacement. Numerous methods for direct energy harvesting have been developed to power these low-power consumption sensors. Among all the developed harvesters, piezoelectric energy harvesters offer the most promise for eliminating batteries from future devices. These devices do not require maintenance, and they have compact and simple structures that can be attached to low-power devices to directly generate high-density power. In the present study, an atlas of 85 designs of piezoelectric energy harvesters in oceanic applications that have recently been reported in the state-of-the-art is provided. The atlas categorizes these designs based on their configurations, including cantilever beam, diaphragm, stacked, and cymbal configurations, and provides insightful information on their material, coupling modes, location, and power range. A set of unified schematics are drawn to show their working principles in this atlas. Moreover, all the concepts in the atlas are critically discussed in the body of this review. Different aspects of oceanic piezoelectric energy harvesters are also discussed in detail to address the challenges in the field and identify the research gaps.
Collapse
Affiliation(s)
| | - Guangbo Hao
- School of Engineering and Architecture, University College Cork, T12K8AF Cork, Ireland;
| |
Collapse
|
19
|
A 28 nm Bulk CMOS Fully Digital BPSK Demodulator for US-Powered IMDs Downlink Communications. ELECTRONICS 2022. [DOI: 10.3390/electronics11050698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low-invasive and battery-less implantable medical devices (IMDs) have been increasingly emerging in recent years. The developed solutions in the literature often concentrate on the Bidirectional Data-Link for long-term monitoring devices. Indeed, their ability to collect data and communicate them to the external world, namely Data Up-Link, has revealed a promising solution for bioelectronic medicine. Furthermore, the capacity to control organs such as the brain, nerves, heart-beat and gastrointestinal activities, made up through the manipulation of electrical transducers, could optimise therapeutic protocols and help patients’ pain relief. These kinds of stimulations come from the modulation of a powering signal generated from an externally placed unit coupled to the implanted receivers for power/data exchanging. The established communication is also defined as a Data Down-Link. In this framework, a new solution of the Binary Phase-Shift Keying (BPSK) demodulator is presented in this paper in order to design a robust, low-area, and low-power Down-Link for ultrasound (US)-powered IMDs. The implemented system is fully digital and PLL-free, thus reducing area occupation and making it fully synthesizable. Post-layout simulation results are reported using a 28 nm Bulk CMOS technology provided by TSMC. Using a 2 MHz carrier input signal and an implant depth of 1 cm, the data rate is up to 1.33 Mbit/s with a 50% duty cycle, while the minimum average power consumption is cut-down to 3.3 μW in the typical corner.
Collapse
|
20
|
Slinkov GD, Mantsevich SN, Balakshy VI, Magdich LN. An Electrical Method for Acoustic Resonance Frequency Adjustment in Standing-Wave Acousto-Optic Devices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:886-891. [PMID: 34878973 DOI: 10.1109/tuffc.2021.3133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An acousto-optic (AO) device can be configured to operate in a standing wave (SW) mode. The effectiveness of an SW AO device surpasses the effectiveness of a conventional, running-wave one, when the driving signal frequency meets the SW condition. This SW frequency depends primarily on the acoustic wave velocity and the crystal length. While promising significant benefits, this situation imposes serious restrictions on the AO device performance. In this study, we examine the SW frequency dependency of such a device on its electrical impedance matching circuit (EIMC) parameters and configuration both theoretically and experimentally. Our analysis is aimed at this effect utilization for the purpose of expanding of the standing-wave AO devices applicability domain.
Collapse
|
21
|
Theoretical and Empirical Verification of Electrical Impedance Matching Method for High-Power Transducers. ELECTRONICS 2022. [DOI: 10.3390/electronics11020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In our prior study, a systematic approach was used to devise Langevin transducers for high-power applications where the energy efficiency was not considered in the design criteria. In this paper, the impedance matching methods are thus proposed to evaluate what matching topology is appropriate for their use. Both the series inductor scheme and low pass filter composed of a series inductor and shunt capacitor are examined as matching circuits. According to MATLAB simulation, the resonance frequency is seen at 36.79 kHz due to a series L circuit, and its associated impedance is reduced by 70.45% from that of its non-matching condition. The measured resonance frequency is 36.77 kHz and the corresponding impedance is decreased by 59.52%. Furthermore, the acoustic pressure is measured to determine the effect of the matching circuit on the transducer’s actual behavior. The transducer with a series L circuit shows more efficient matching results, 2.28 kPa of positive acoustic pressure is emitted without matching and 3.35 kPa is emitted with a series L element, respectively. As a result, this study demonstrates how to evaluate the influence of matching circuits by using our customized approach rather than commercial SPICE programs, as well as how to experimentally verify the acoustic behavior of high-power Langevin transducers.
Collapse
|
22
|
Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: A Review. ENERGIES 2022. [DOI: 10.3390/en15020432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts.
Collapse
|
23
|
Ramos A, Ruiz A, Riera E. Modeling Pulsed High-Power Spikes in Tunable HV Capacitive Drivers of Piezoelectric Wideband Transducers to Improve Dynamic Range and SNR for Ultrasonic Imaging and NDE. SENSORS (BASEL, SWITZERLAND) 2021; 21:7178. [PMID: 34770484 PMCID: PMC8588323 DOI: 10.3390/s21217178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022]
Abstract
The signal-to-noise ratios (SNR) of ultrasonic imaging and non-destructive evaluation (NDE) applications can be greatly improved by driving each piezoelectric transducer (single or in array) with tuned HV capacitive-discharge drivers. These can deliver spikes with kW pulsed power at PRF ≈ 5000 spikes/s, achieving levels higher even than in CW high-power ultrasound: up to 5 kWpp. These conclusions are reached here by applying a new strategy proposed for the accurate modeling of own-design re-configurable HV capacitive drivers. To obtain such rigorous spike modeling, the real effects of very high levels of pulsed intensities (3-10 A) and voltages (300-700 V) were computed. Unexpected phenomena were found: intense brief pulses of driving power and probe emitted force, as well as nonlinearities in semiconductors, though their catalog data include only linear ranges. Fortunately, our piezoelectric and circuital devices working in such an intense regime have not shown serious heating problems, since the finally consumed "average" power is rather small. Intensity, power, and voltage, driving wideband transducers from our capacitive drivers, are researched here in order to drastically improve (∆ >> 40 dB) their ultrasonic "net dynamic range available" (NDRA), achieving emitted forces > 240 Newtonspp and receiving ultrasonic signals of up to 76-205 Vpp. These measurements of ultrasonic pulsed voltages, received in NDE and Imaging, are approximately 10,000 larger than those usual today. Thus, NDRA ranges were optimized for three laboratory capacitive drivers (with six commercial transducers), which were successfully applied in the aircraft industry for imaging landing flaps in Boeing wings, despite suffering acoustic losses > 120 dB.
Collapse
Affiliation(s)
- Antonio Ramos
- R&D Group “Ultrasonic Systems and Technologies”, Institute ITEFI (CSIC), Serrano 144, 28006 Madrid, Spain; (A.R.); (E.R.)
| | | | | |
Collapse
|
24
|
Yang SY, Sencadas V, You SS, Jia NZX, Srinivasan SS, Huang HW, Ahmed AE, Liang JY, Traverso G. Powering Implantable and Ingestible Electronics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009289. [PMID: 34720792 PMCID: PMC8553224 DOI: 10.1002/adfm.202009289] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 05/28/2023]
Abstract
Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.
Collapse
Affiliation(s)
- So-Yoon Yang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitor Sencadas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Siheng Sean You
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neil Zi-Xun Jia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya Sruthi Srinivasan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hen-Wei Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdelsalam Elrefaey Ahmed
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Ying Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Lay R, Deijs GS, Malmström J. The intrinsic piezoelectric properties of materials - a review with a focus on biological materials. RSC Adv 2021; 11:30657-30673. [PMID: 35498945 PMCID: PMC9041315 DOI: 10.1039/d1ra03557f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piezoelectricity, a linear electromechanical coupling, is of great interest due to its extensive applications including energy harvesters, biomedical, sensors, and automobiles. A growing amount of research has been done to investigate the energy harvesting potential of this phenomenon. Traditional piezoelectric inorganics show high piezoelectric outputs but are often brittle, inflexible and may contain toxic compounds such as lead. On the other hand, biological piezoelectric materials are biodegradable, biocompatible, abundant, low in toxicity and are easy to fabricate. Thus, they are useful for many applications such as tissue engineering, biomedical and energy harvesting. This paper attempts to explain the basis of piezoelectricity in biological and non-biological materials and research involved in those materials as well as applications and limitations of each type of piezoelectric material. Piezoelectricity, a linear electromechanical coupling, is of great interest due to its extensive applications including energy harvesters, biomedical, sensors, and automobiles.![]()
Collapse
Affiliation(s)
- Ratanak Lay
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Gerrit Sjoerd Deijs
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand.,Department of Chemistry, Faculty of Science, The University of Auckland Auckland New Zealand
| | - Jenny Malmström
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland Auckland New Zealand .,MacDiamid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
26
|
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele MA. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv Healthc Mater 2021; 10:e2100986. [PMID: 34235886 DOI: 10.1002/adhm.202100986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.
Collapse
Affiliation(s)
- Brendan L. Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
| | - Seedevi Senevirathne
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Katie Kilgour
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Darragh McArt
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Manus Biggs
- Centre for Research in Medical Devices National University of Ireland Newcastle Road Galway H91 W2TY Ireland
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
- Department of Electrical and Computer Engineering North Carolina State University 890 Oval Dr. Raleigh NC 27695 USA
| |
Collapse
|
27
|
Fu H, Rao J, Harb MS, Theodossiades S. Ultrasonic wireless power links for battery-free condition monitoring in metallic enclosures. ULTRASONICS 2021; 114:106395. [PMID: 33756220 DOI: 10.1016/j.ultras.2021.106395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This paper presented a novel ultrasonic wireless power link (UWPL) to provide power supply for embedded condition monitoring of enclosed metallic structures, where recharging or replacing batteries can be problematic. Two piezoelectric transducers are adopted to establish the wireless power links, within which one transducer is used to generate ultrasonic waves and the other is to receive the transferred ultrasonic energy and to energize the associated embedded condition monitoring units. A power management solution is established to regulate the receiver output into a constant voltage suitable for sensing application. A theoretical model was established to understand the UWPL dynamics and to analyze the energy budget balance between the UWPL and the sensing power demands. A finite element model was built to validate the proposed idea. The UWPL was then experimentally implemented using two piezoelectric transducers and tested in aluminium plates with different thickness. A power management sub-system was developed and tested for sensing applications. An output power of 1.73 mW was obtained on a 1.5 kΩ resister with the input voltage of 15 V at 42.6 kHz through a 6 mm-thick aluminium plate. Sufficient power can be transferred over a large distance via metallic structures, showing the capability in implementing battery-free condition monitoring of enclosed metallic structures, such as petroleum pipelines, engines, and aluminium airframe.
Collapse
Affiliation(s)
- Hailing Fu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK.
| | - Jing Rao
- Chair of Computational Modeling and Simulation, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany.
| | - Mohammad S Harb
- Laboratory of Smart Structures and Structural Integrity, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon.
| | - Stephanos Theodossiades
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK.
| |
Collapse
|
28
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U, Uda MNA. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review. Biotechnol Appl Biochem 2021; 69:1395-1417. [PMID: 34143905 DOI: 10.1002/bab.2212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanogap biosensors have fascinated researchers due to their excellent electrical properties. Nanogap biosensors comprise three arrays of electrodes that form nanometer-size gaps. The sensing gaps have become the major building blocks of several sensing applications, including bio- and chemosensors. One of the advantages of nanogap biosensors is that they can be fabricated in nanoscale size for various downstream applications. Several studies have been conducted on nanogap biosensors, and nanogap biosensors exhibit potential material properties. The possibilities of combining these unique properties with a nanoscale-gapped device and electrical detection systems allow excellent and potential prospects in biomolecular detection. However, their fabrication is challenging as the gap is becoming smaller. It includes high-cost, low-yield, and surface phenomena to move a step closer to the routine fabrications. This review summarizes different feasible techniques in the fabrication of nanogap electrodes, such as preparation by self-assembly with both conventional and nonconventional approaches. This review also presents a comprehensive analysis of the fabrication, potential applications, history, and the current status of nanogap biosensors with a special focus on nanogap-mediated bio- and chemical sonsors.
Collapse
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kampus Uniciti Alam Sg. Chuchuh, Padang Besar (U), Perlis, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Th S Dhahi
- Physics Department, University of Basrah, Basra, Iraq.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
29
|
Capineri L, Bulletti A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2929. [PMID: 33922056 PMCID: PMC8122321 DOI: 10.3390/s21092929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
This review article is focused on the analysis of the state of the art of sensors for guided ultrasonic waves for the detection and localization of impacts for structural health monitoring (SHM). The recent developments in sensor technologies are then reported and discussed through the many references in recent scientific literature. The physical phenomena that are related to impact event and the related main physical quantities are then introduced to discuss their importance in the development of the hardware and software components for SHM systems. An important aspect of the article is the description of the different ultrasonic sensor technologies that are currently present in the literature and what advantages and disadvantages they could bring in relation to the various phenomena investigated. In this context, the analysis of the front-end electronics is deepened, the type of data transmission both in terms of wired and wireless technology and of online and offline signal processing. The integration aspects of sensors for the creation of networks with autonomous nodes with the possibility of powering through energy harvesting devices and the embedded processing capacity is also studied. Finally, the emerging sector of processing techniques using deep learning and artificial intelligence concludes the review by indicating the potential for the detection and autonomous characterization of the impacts.
Collapse
Affiliation(s)
- Lorenzo Capineri
- Department of Information Engineering, University of Florence, Via S. Marta 3, 50139 Firenze, Italy;
| | | |
Collapse
|
30
|
Guo T, Zheng X, Palffy-Muhoray P. Impedance matching in an elastic actuator. SOFT MATTER 2021; 17:4191-4194. [PMID: 33881126 DOI: 10.1039/d1sm00132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We optimize the performance of an elastic actuator consisting of an active core in a host which performs mechanical work on a load. The system, initially with localized elastic energy in the active component, relaxes and distributes energy to the rest of the system. Using the linearized Mooney-Rivlin hyperelastic model in a cylindrical geometry and assuming viscous relaxation, we show that the value of Young's modulus of the impedance matching host which maximizes the energy transfer from the active component to the load is the geometric mean of Young's moduli of the active component and the elastic load. This is similar to the classic results for impedance matching for maximizing the transmittance of light propagating through dielectric media.
Collapse
Affiliation(s)
- Tianyi Guo
- Advanced Materials and Liquid Crystal Institute, Kent State University, OH 44240, USA.
| | - Xiaoyu Zheng
- Department of Mathematical Sciences, Kent State University, OH 44240, USA.
| | - Peter Palffy-Muhoray
- Advanced Materials and Liquid Crystal Institute, Kent State University, OH 44240, USA. and Department of Mathematical Sciences, Kent State University, OH 44240, USA.
| |
Collapse
|
31
|
Huang A, Connacher W, Stambaugh M, Zhang N, Zhang S, Mei J, Jain A, Alluri S, Leung V, Rajapaksa AE, Friend J. Practical microcircuits for handheld acoustofluidics. LAB ON A CHIP 2021; 21:1352-1363. [PMID: 33565534 DOI: 10.1039/d0lc01008a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Acoustofluidics has promised to enable lab-on-a-chip and point-of-care devices in ways difficult to achieve using other methods. Piezoelectric ultrasonic transducers-as small as the chips they actuate-provide rapid fluid and suspended object transport. Acoustofluidic lab-on-chip devices offer a vast range of benefits in early disease identification and noninvasive drug delivery. However, their potential has long been undermined by the need for benchtop or rack-mount electronics. The piezoelectric ultrasonic transducers within require these equipment and thus acoustofluidic device implementation in a bedside setting has been limited. Here we detail a general process to enable the reader to produce battery or mains-powered microcircuits ideal for driving 1-300 MHz acoustic devices. We include the general design strategy for the circuit, the blocks that collectively define it, and suitable, specific choices for components to produce these blocks. We furthermore illustrate how to incorporate automated resonance finding and tracking, sensing and feedback, and built-in adjustability to accommodate devices' vastly different operating frequencies and powers in a single driver, including examples of fluid and particle manipulation typical of the needs in our discipline. With this in hand, the many groups active in lab-on-a-chip acoustofluidics can now finally deliver on the promise of handheld, point-of-care technologies.
Collapse
Affiliation(s)
- An Huang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. http://friend.ucsd.edu
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Internet of Things: A Review on Theory Based Impedance Matching Techniques for Energy Efficient RF Systems. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2021. [DOI: 10.3390/jlpea11020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within an increasingly connected world, the exponential growth in the deployment of Internet of Things (IoT) applications presents a significant challenge in power and data transfer optimisation. Currently, the maximization of Radio Frequency (RF) system power gain depends on the design of efficient, commercial chips, and on the integration of these chips by using complex RF simulations to verify bespoke configurations. However, even if a standard 50Ω transmitter’s chip has an efficiency of 90%, the overall power efficiency of the RF system can be reduced by 10% if coupled with a standard antenna of 72Ω. Hence, it is necessary for scalable IoT networks to have optimal RF system design for every transceiver: for example, impedance mismatching between a transmitter’s antenna and chip leads to a significant reduction of the corresponding RF system’s overall power efficiency. This work presents a versatile design framework, based on well-known theoretical methods (i.e., transducer gain, power wave approach, transmission line theory), for the optimal design in terms of power delivered to a load of a typical RF system, which consists of an antenna, a matching network, a load (e.g., integrated circuit) and transmission lines which connect all these parts. The aim of this design framework is not only to reduce the computational effort needed for the design and prototyping of power efficient RF systems, but also to increase the accuracy of the analysis, based on the explanatory analysis within our design framework. Simulated and measured results verify the accuracy of this proposed design framework over a 0–4 GHz spectrum. Finally, a case study based on the design of an RF system for Bluetooth applications demonstrates the benefits of this RF design framework.
Collapse
|
33
|
Kim K, Choi H. High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems. PLoS One 2021; 16:e0249034. [PMID: 33780492 PMCID: PMC8006987 DOI: 10.1371/journal.pone.0249034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
This paper presents a novel amplifier that satisfies both low distortion and high efficiency for high-frequency wireless ultrasound systems with limited battery life and size. While increasing the amplifier efficiency helps to address the problems for wireless ultrasound systems, it can cause signal distortion owing to harmonic components. Therefore, a new type of class F amplifier is designed to achieve high efficiency and low distortion. In the amplifier, the resonant circuit at each stage controls the harmonic components to reduce distortion and improve efficiency. Transformers with a large shunt resistor are also helpful to reduce the remaining noise in the input signal. The proposed class F amplifier is tested using simulations, and the voltage and current waveforms are analyzed to achieve correct operation with adequate efficiency and distortion. The measured performance of the class F amplifier has a gain of 23.2 dB and a power added efficiency (PAE) of 88.9% at 25 MHz. The measured DC current is 121 mA with a variance of less than 1% when the PA is operating. We measured the received echo signal through the pulse-echo response using a 25-MHz transducer owing to the compatibility of the designed class F amplifier with high- frequency transducers. The measured total harmonic distortion (THD) of the echo signal was obtained as 4.5% with a slightly low ring-down. The results show that the low THD and high PAE of the new high-efficiency and high-voltage amplifier may increase battery life and reduce the cooling fan size, thus providing a suitable environment for high-frequency wireless ultrasound systems.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Hojong Choi
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Boubenia R, Le Moal P, Bourbon G, Ramasso E, Joseph E. CMUT-Based Sensor for Acoustic Emission Application: Experimental and Theoretical Contributions to Sensitivity Optimization. SENSORS (BASEL, SWITZERLAND) 2021; 21:2042. [PMID: 33799399 PMCID: PMC7999056 DOI: 10.3390/s21062042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022]
Abstract
The paper deals with a capacitive micromachined ultrasonic transducer (CMUT)-based sensor dedicated to the detection of acoustic emissions from damaged structures. This work aims to explore different ways to improve the signal-to-noise ratio and the sensitivity of such sensors focusing on the design and packaging of the sensor, electrical connections, signal processing, coupling conditions, design of the elementary cells and operating conditions. In the first part, the CMUT-R100 sensor prototype is presented and electromechanically characterized. It is mainly composed of a CMUT-chip manufactured using the MUMPS process, including 40 circular 100 µm radius cells and covering a frequency band from 310 kHz to 420 kHz, and work on the packaging, electrical connections and signal processing allowed the signal-to-noise ratio to be increased from 17 dB to 37 dB. In the second part, the sensitivity of the sensor is studied by considering two contributions: the acoustic-mechanical one is dependent on the coupling conditions of the layered sensor structure and the mechanical-electrical one is dependent on the conversion of the mechanical vibration to electrical charges. The acoustic-mechanical sensitivity is experimentally and numerically addressed highlighting the care to be taken in implementation of the silicon chip in the brass housing. Insertion losses of about 50% are experimentally observed on an acoustic test between unpackaged and packaged silicon chip configurations. The mechanical-electrical sensitivity is analytically described leading to a closed-form amplitude of the detected signal under dynamic excitation. Thus, the influence of geometrical parameters, material properties and operating conditions on sensitivity enhancement is clearly established: such as smaller electrostatic air gap, and larger thickness, Young's modulus and DC bias voltage.
Collapse
Affiliation(s)
- Redha Boubenia
- Department of Applied Mechanics, CNRS/UFC/ENSMM/UTBM, FEMTO-ST Institute, University Bourgogne Franche-Comté, 25000 Besancon, France; (P.L.M.); (G.B.); (E.R.); (E.J.)
| | | | | | | | | |
Collapse
|
35
|
Shan X, Song H, Cao H, Zhang L, Zhao X, Fan J. A Dynamic Hysteresis Model and Nonlinear Control System for a Structure-Integrated Piezoelectric Sensor-Actuator. SENSORS (BASEL, SWITZERLAND) 2021; 21:E269. [PMID: 33401582 PMCID: PMC7794881 DOI: 10.3390/s21010269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
The piezoelectric sensor-actuator plays an important role in micro high-precision dynamic systems such as medical robots and micro grippers. These mechanisms need high-precision position control, while the size of the sensor and actuator should be as small as possible. For this paper, we designed and manufactured a structure-integrated piezoelectric sensor-actuator and proposed its PID (Proportion Integral Differential) control system based on the dynamic hysteresis nonlinear model and the inverse model. Through simplifying the structure of the piezoelectric sensor-actuator by the centralized parameter method, this paper establishes its dynamic model and explores the input-output transfer function by taking the relationship between the output force and displacement as the medium. The experiment shows the maximum distance of the hysteresis curve is 0.26 μm. By parsing the hysteresis curve, this paper presents a dynamic hysteresis nonlinear model and its inverse model based on a 0.5 Hz quasi-static model and linear transfer function. Simulation results show that the accuracy of the static model is higher than that of the dynamic model when the frequency is 0.5 Hz, but the compensation accuracy of the dynamic model is obviously better than that of the static model with the increase of the frequency. This paper also proposes a control system for the sensor-actuator by means of the inverse model. The simulation results indicate that the output root mean square error was reduced to one-quarter of the original, which proves that the structure-integrated piezoelectric sensor-actuator and its control system have a great significance for signal sensing and output control of micro high-precision dynamic systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhuang Fan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.S.); (H.C.); (L.Z.); (X.Z.)
| |
Collapse
|
36
|
Rathod VT. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4051. [PMID: 32708159 PMCID: PMC7411934 DOI: 10.3390/s20144051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023]
Abstract
The coupling of waves between the piezoelectric generators, detectors, and propagating media is challenging due to mismatch in the acoustic properties. The mismatch leads to the reverberation of waves within the transducer, heating, low signal-to-noise ratio, and signal distortion. Acoustic impedance matching increases the coupling largely. This article presents standard methods to match the acoustic impedance of the piezoelectric sensors, actuators, and transducers with the surrounding wave propagation media. Acoustic matching methods utilizing active and passive materials have been discussed. Special materials such as nanocomposites, metamaterials, and metasurfaces as emerging materials have been presented. Emphasis is placed throughout the article to differentiate the difference between electric and acoustic impedance matching and the relation between the two. Comparison of various techniques is made with the discussion on capabilities, advantages, and disadvantages. Acoustic impedance matching for specific and uncommon applications has also been covered.
Collapse
Affiliation(s)
- Vivek T Rathod
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
38
|
Abstract
Abstract
Purpose
Photoacoustic (PA) microscopy has emerged as a useful tool in biomedical imaging applications such as visualization of microvasculature and hemoglobin oxygen saturation, single-cell, and label-free imaging of organs including cancer. Since the ultrasound transducers used for PA signal detection are not optically transparent, the integration of optical and acoustic modules for coaxial alignment of laser and acoustic beam fields in PA microscopy is complex and costly.
Methods
Here, we report a recently developed optically transparent focused transducer for combined PA and ultrasound (US) microscopy. All the acoustic layers including the acoustic lens are optically transparent, enabling simple integration of optical and acoustic modules for both imaging modalities.
Results
The mean light transmittance of the transducer’s backing layer and acoustic lens and of the transducer itself were measured at 92%, 83%, and 66%, respectively. Results from in vitro and in vivo experiments demonstrated the transducer to be suitable for both US and PA imaging.
Conclusions
The results of this study represent a step toward efficient construction of probes for combined PA and US microscopy.
Collapse
|
39
|
Kim J, Lee J. Parametric Study of Bolt Clamping Effect on Resonance Characteristics of Langevin Transducers with Lumped Circuit Models. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1952. [PMID: 32244353 PMCID: PMC7180469 DOI: 10.3390/s20071952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022]
Abstract
We recently proposed a numerical model using equivalent circuit models to analyze the resonance characteristics of Langevin transducers and design them in a systematic manner. However, no pre-load torque biased by a metal bolt was considered in the model. Here, a parametric study is, therefore, carried out to reveal how model parameters are adapted to incorporate the pre-compression effect into our existing model. Analytical results are compared with corresponding experimental data, particularly regarding the input electrical impedance and effective electromechanical coupling coefficient for the transducer at resonance modes. The frequency response of input impedance is presented as a function of torque, both theoretically and experimentally. For 10.0 N·m bias, for instance, both resonance and anti-resonance frequencies are calculated as 38.64 kHz and 39.78 kHz, while these are measured as 38.62 kHz and 39.77 kHz by the impedance analyzer. The impedance difference between these cases is 14 Ω at resonance and 9 kΩ at anti-resonance, while the coupling coefficients in both cases become 0.238 and 0.239, respectively. Hence, these test results are closely matched with their theoretical values. Consequently, this study provides a quantitative guideline that specifies the pre-loading condition of bolt clamps with proper parameter settings to predict the intended resonance characteristics of Langevin transducers.
Collapse
Affiliation(s)
| | - Jungwoo Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea;
| |
Collapse
|
40
|
Abstract
A method is proposed for estimating the acoustic power output of ultrasound transducers using a two-port model with electrical impedance measurements made in three different propagation media. When evaluated for two high-intensity focused ultrasound transducers at centre frequencies between 0.50 and 3.19 MHz, the resulting power estimates exceeded acoustic estimates by 4.5–21.8%. The method was shown to be valid for drive levels producing up to 20 MPa in water and should therefore be appropriate for many HIFU (high-intensity focused ultrasound) applications, with the primary advantage of employing relatively low-cost, non-specialist materials and instrumentation.
Collapse
|
41
|
Matko V, Milanovič M. Detection Principles of Temperature Compensated Oscillators with Reactance Influence on Piezoelectric Resonator. SENSORS (BASEL, SWITZERLAND) 2020; 20:E802. [PMID: 32024160 PMCID: PMC7038692 DOI: 10.3390/s20030802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/04/2023]
Abstract
This review presents various ways of detection of different physical quantities based on the frequency change of oscillators using piezoelectric crystals. These are influenced by the reactance changes modifying their electrical characteristics. Reactance in series, in parallel, or a combination of reactances can impact the electrical crystal substitute model by influencing its resonant oscillation frequency. In this way, various physical quantities near resonance can be detected with great sensitivity through a small change of capacitance or inductance. A piezoelectric crystal impedance circle and the mode of frequency changing around the resonant frequency change are shown. This review also presents the influence of reactance on the piezoelectric crystal, the way in which the capacitance lost among the crystal's electrodes is compensated, and how the mode of oscillators' output frequency is converted to lower frequency range (1-100 kHz). Finally, the review also explains the temperature-frequency compensation of the crystals' characteristics in oscillators that use temperature-frequency pair of crystals and the procedure of the compensation of crystals own temperature characteristics based on the method switching between the active and reference reactance. For the latter, the experimental results of the oscillator's output frequency stability (fout = ±0.002 ppm) at dynamical change of environment temperature (0-50 °C) are shown.
Collapse
Affiliation(s)
- Vojko Matko
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška c. 46, 2000 Maribor, Slovenia;
| | | |
Collapse
|