1
|
Huang YJ, Chung CK. Research on Performance Enhancement, Output Regulation, and the Applications of Nanogenerators. MICROMACHINES 2025; 16:208. [PMID: 40047672 PMCID: PMC11857593 DOI: 10.3390/mi16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
The demand for sensors in wearable devices [...].
Collapse
Affiliation(s)
| | - Chen-Kuei Chung
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Bahnasy TA, Amer TS, Abohamer MK, Abosheiaha HF, Elameer AS, Almahalawy A. Stability and bifurcation analysis of a 2DOF dynamical system with piezoelectric device and feedback control. Sci Rep 2024; 14:26477. [PMID: 39488558 PMCID: PMC11531538 DOI: 10.1038/s41598-024-75342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
This study aims to demonstrate the behaviors of a two degree-of-freedom (DOF) dynamical system consisting of attached mass to a nonlinear damped harmonic spring pendulum with a piezoelectric device. Such a system is influenced by a parametric excitation force on the direction of the spring's elongation and an operating moment at the supported point. A negative-velocity-feedback (NVF) controller is inserted into the main system to reduce the undesired vibrations that affect the system's efficiency, especially at the resonance state. The equations of motion (EOM) are derived by using Lagrangian equations. Through the use of the multiple-scales-strategy (MSS), approximate solutions (AS) are investigated up to the third order. The accuracy of the AS is verified by comparing them to the obtained numerical solutions (NS) through the fourth-order Runge-Kutta Method (RK-4). The study delves into resonance cases and solvability conditions to provide the modulation equations (ME). Graphical representations showing the time histories of the obtained solutions and frequency responses are presented utilizing Wolfram Mathematica 13.2 in addition to MATLAB software. Additionally, discusses the bifurcation diagrams, Poincaré maps, and Lyapunov exponent spectrums to show the various behavior patterns of the system. To convert vibrating motion into electrical power, a piezoelectric sensor is connected to the dynamical model, which is just one of the energy harvesting (EH) technologies with extensive applications in the commercial, industrial, aerospace, automotive, and medical industries. Moreover, the time histories of the obtained solutions with and without control are analyzed graphically. Finally, resonance curves are used to discuss stability analysis and steady-state solutions.
Collapse
Affiliation(s)
- Taher A Bahnasy
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, 31734, Egypt
| | - T S Amer
- Mathematics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Basic Science Center, Misr University for Science and Technology (MUST), 6 of October, Egypt.
| | - M K Abohamer
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, 31734, Egypt
| | - H F Abosheiaha
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, 31734, Egypt
| | - A S Elameer
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, 31734, Egypt
| | - A Almahalawy
- Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, 31734, Egypt
| |
Collapse
|
3
|
Shaker A, Khedewy AT, Hassan MA, El-Baky MAA. Thermo-mechanical characterization of electrospun polyurethane/carbon-nanotubes nanofibers: a comparative study. Sci Rep 2023; 13:17368. [PMID: 37833445 PMCID: PMC10575888 DOI: 10.1038/s41598-023-44020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Creating ultrathin, mountable fibers from a wide range of polymeric functional materials has made electrospinning an adequate approach to producing highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between unidirectional and randomly aligned TPU and TPU/MWCNTs nanofibrous structures. The incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.9 to 7.5 MPa. On the other hand, for unidirectionally spun fibers, Young's modulus increased from 17.1 to 18.4 MPa upon the addition of MWCNTs. However, dynamic mechanical analysis revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 to 614 MPa for TPU and TPU/MWCNTs mats, respectively, and a slight increase from 119 to 143 MPa for unidirectional TPU and TPU/MWCNTs mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 to 58.9 MPa and from 6.4 to 12 MPa for the random and aligned fibers, respectively. The glass transition values for all the mats fell in the temperature range of - 60 to - 20 °C. The thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU's polymer structure and that the TPU/MWCNTs nanocomposite exhibited stable thermal degradation properties.
Collapse
Affiliation(s)
- A Shaker
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira T Khedewy
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Hassan
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Abd El-Baky
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Ali A, Ashfaq M, Qureshi A, Muzammil U, Shaukat H, Ali S, Altabey WA, Noori M, Kouritem SA. Smart Detecting and Versatile Wearable Electrical Sensing Mediums for Healthcare. SENSORS (BASEL, SWITZERLAND) 2023; 23:6586. [PMID: 37514879 PMCID: PMC10384670 DOI: 10.3390/s23146586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
A rapidly expanding global population and a sizeable portion of it that is aging are the main causes of the significant increase in healthcare costs. Healthcare in terms of monitoring systems is undergoing radical changes, making it possible to gauge or monitor the health conditions of people constantly, while also removing some minor possibilities of going to the hospital. The development of automated devices that are either attached to organs or the skin, continually monitoring human activity, has been made feasible by advancements in sensor technologies, embedded systems, wireless communication technologies, nanotechnologies, and miniaturization being ultra-thin, lightweight, highly flexible, and stretchable. Wearable sensors track physiological signs together with other symptoms such as respiration, pulse, and gait pattern, etc., to spot unusual or unexpected events. Help may therefore be provided when it is required. In this study, wearable sensor-based activity-monitoring systems for people are reviewed, along with the problems that need to be overcome. In this review, we have shown smart detecting and versatile wearable electrical sensing mediums in healthcare. We have compiled piezoelectric-, electrostatic-, and thermoelectric-based wearable sensors and their working mechanisms, along with their principles, while keeping in view the different medical and healthcare conditions and a discussion on the application of these biosensors in human health. A comparison is also made between the three types of wearable energy-harvesting sensors: piezoelectric-, electrostatic-, and thermoelectric-based on their output performance. Finally, we provide a future outlook on the current challenges and opportunities.
Collapse
Affiliation(s)
- Ahsan Ali
- Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan
| | - Muaz Ashfaq
- Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan
| | - Aleen Qureshi
- Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan
| | - Umar Muzammil
- Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan
| | - Hamna Shaukat
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang 22621, Pakistan
| | - Shaukat Ali
- Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan
| | - Wael A Altabey
- International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China
- Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Mohammad Noori
- Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Sallam A Kouritem
- Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| |
Collapse
|
5
|
Joy A, Joshi V, Narendran K, Ghoshal R. Piezoelectric energy extraction from a cylinder undergoing vortex-induced vibration using internal resonance. Sci Rep 2023; 13:6924. [PMID: 37117292 PMCID: PMC10147635 DOI: 10.1038/s41598-023-33760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
A novel concept of utilizing the kinetic energy from ocean currents/wind by means of internal resonance is proposed to address the increasing global energy demand by generating clean and sustainable power. In this work, a non-linear rotative gravity pendulum is employed to autoparametrically excite the elastically mounted cylinder for a wide range of flow velocities. This concept is adopted to increase the oscillation amplitude of the cylinder due to vortex-induced vibration (VIV) in the de-synchronized region for energy harvesting. In this regard, a VIV-based energy harvesting device is proposed that consists of a cylinder with an attached pendulum, and energy is harvested with bottom-mounted piezoelectric transducers. The cylinder undergoes VIV when it is subjected to fluid flow and this excites the coupled fluid-multibody cylinder-pendulum system autoparametrically. In the de-synchronized region, when the vortex shedding frequency becomes two times the natural frequency of the pendulum, an internal resonance occurs. This helps in achieving a higher oscillation amplitude of the cylinder which does not happen otherwise. This study is focused on the two degree-of-freedom (2-DoF) cylinder-pendulum system where the cylinder is free to exhibit cross-flow vortex-induced vibrations subjected to the fluid. The objective of this work is to numerically investigate the effect of a non-linear rotative gravity pendulum (NRGP) on the VIV characteristics and piezoelectric efficiency of the system. The numerical model is based on the wake-oscillator model coupled with the piezoelectric constitutive equation. The influence of the frequency ratio, mass ratio, torsional damping ratio, and ratio of cylinder diameter to pendulum length of the NRGP device on response characteristics due to VIV is also investigated. A detailed comparative analysis in terms of electric tension and efficiency is performed numerically for flows with a wide range of reduced velocities for the cylinder with and without NRGP. A comprehensive study on the implications of internal resonance between the pendulum and a cylinder undergoing VIV on generated electric tension is also reported.
Collapse
Affiliation(s)
- Annette Joy
- Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Vaibhav Joshi
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Sancoale, Goa, 403726, India
| | - Kumar Narendran
- Department of Ocean Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
| | - Ritwik Ghoshal
- Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
6
|
Huang J, Xu C, Ma N, Zhou Q, Ji Z, Jia C, Xiao S, Wang P. Intelligent Device for Harvesting the Vibration Energy of the Automobile Exhaust with a Piezoelectric Generator. MICROMACHINES 2023; 14:mi14020491. [PMID: 36838191 PMCID: PMC9960593 DOI: 10.3390/mi14020491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/13/2023]
Abstract
With increasing consumption of energy and increasing environmental pollution, research on capturing the vibration energy lost during transportation and vehicle driving is growing rapidly. There is a large amount of vibration energy in the automobile exhaust system that can be recycled. This paper proposes a self-powered intelligent device (SPID) using a piezoelectric energy generator. The SPID includes a piezoelectric generator and sensor unit, and the generator is installed at the end of the automobile exhaust system. The generator adopts a parallel structure of four piezoelectric power generation units, and the sensing unit comprises light-emitting diode warning lights or low-power sensors. A simulated excitation experiment verifies the working state and peak power of the piezoelectric generator unit, which can achieve 23.4 μW peak power. The self-power supply and signal monitoring functions of the intelligent device are verified in experiments conducted for driving light-emitting diode lights and low-power sensors. The device is expected to play a crucial role in the field of intelligent driving and automobile intelligence.
Collapse
Affiliation(s)
- Jie Huang
- Beijing Information Technology College, Beijing 100015, China
| | - Cheng Xu
- Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
| | - Nan Ma
- Beijing University of Technology, Beijing 100124, China
| | - Qinghui Zhou
- Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhaohua Ji
- Beijing Information Technology College, Beijing 100015, China
| | - Chunxia Jia
- Beijing Information Technology College, Beijing 100015, China
| | - Shan Xiao
- Beijing Information Technology College, Beijing 100015, China
| | - Peng Wang
- Beijing Information Technology College, Beijing 100015, China
| |
Collapse
|
7
|
Objective diagnosis of ADHD through movement analysis by using a smart chair with piezoelectric material. Pediatr Neonatol 2023; 64:46-52. [PMID: 36089537 DOI: 10.1016/j.pedneo.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is the most common neuropsychiatric disorder in schoolchildren. ADHD diagnoses are generally made based on criteria from the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. The diagnosis is made clinically based on observation and information provided by parents and teachers, which is highly subjective and can lead to disparate results. Considering that hyperactivity is one of the main symptoms of ADHD, the inaccuracy of ADHD diagnosis based on subjective criteria necessitates the identification of a method to objectively diagnose ADHD. METHODS In this study, a medical chair containing a piezoelectric material was applied to objectively analyze movements of patients with ADHD, which were compared with those of patients without ADHD. This study enrolled 62 patients-31 patients with ADHD and 31 patients without ADHD. During the clinical evaluation, participants' movements were recorded by the piezoelectric material for analysis. The variance, zero-crossing rate, and high energy rate of movements were subsequently analyzed. RESULTS The results revealed that the variance, zero-crossing rate, and high energy rate were significantly higher in patients with ADHD than in those without ADHD. Classification performance was excellent in both groups, with the area under the curve as high as 98.00%. CONCLUSION Our findings suggest that the use of a smart chair equipped with piezoelectric material is an objective and potentially useful method for supporting the diagnosis of ADHD.
Collapse
|
8
|
Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB. A Review on Piezoelectric Materials and Their Applications. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madunuri Chandra Sekhar
- Department of Physics Chaitanya Bharathi Institute of Technology Hyderabad Telangana 500075 India
| | - Eshwarappa Veena
- Department of Physics PC Jabin Science College Hubbali Hubbali 580031 India
| | - Nagasamudram Suresh Kumar
- Department of Physics JNTUA College of Engineering Anantapur Anantapuramu Andhra Pradesh 515002 India
| | | | - Allam Mallikarjuna
- Department of Physics Audisankara College of Engineering and Technology Gudur Andhra Pradesh 524101 India
| | - Dudekula Baba Basha
- Department of Information SciencesMajmaah University Al'Majmaah 11952Al'MajmaahSaudi Arabia
| |
Collapse
|
9
|
Bhatta S, Mitra R, Ramadoss A, Manju U. Enhanced voltage response in TiO 2nanoparticle-embedded piezoelectric nanogenerator. NANOTECHNOLOGY 2022; 33:335402. [PMID: 35533643 DOI: 10.1088/1361-6528/ac6df5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Poly (vinylidene fluoride) (PVDF) and its copolymers have piqued a substantial amount of research interest for its use in modern flexible electronics. The piezoelectricβ-phase of the polymers can be augmented with the addition of suitable fillers that promoteβ-phase nucleation. In this work, we report an improved output voltage response of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with the incorporation of 10 wt.% Titanium (IV) oxide nanoparticles into the polymer matrix. The nano-filler was dispersed in the polymer matrix to form nanocomposite films via the solution casting technique. X-ray Diffraction and Scanning Electron Microscopy measurements were performed to verify the structure and morphology of the films. Fourier Transform Infrared Spectroscopy revealed enhancement in theβ-phase nucleation from ∼15% to ∼36% with the addition of 10 wt.% titania nanoparticles. Thermogravimetric analysis and Differential Scanning Calorimetry results show improved thermal stability of the nanocomposite film, up to 345 °C, as compared to pristine PVDF-HFP. We also demonstrate a facile method for the fabrication of a piezoelectric nanogenerator withβ-PVDF-HFP/TiO2nanocomposite as an active layer. The outputs from the fabricated nanogenerator reached up to 8.89 V through human finger tapping motions, paving way for its potential use in the field of sensors, actuators, and self-sustaining flexible devices.
Collapse
Affiliation(s)
- Sheetal Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha-751013, India
| | - Rahul Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha-751013, India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar 751024, India
| | - Unnikrishnan Manju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha-751013, India
| |
Collapse
|
10
|
Analytical and Experimental Investigation of a Curved Piezoelectric Energy Harvester. SENSORS 2022; 22:s22062207. [PMID: 35336378 PMCID: PMC8952573 DOI: 10.3390/s22062207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Piezoelectric energy harvesters have traditionally taken the form of base excited cantilevers. However, there is a growing body of research into the use of curved piezoelectric transducers for energy harvesting. The novel contribution of this paper is an analytical model of a piezoelectric energy harvesting curved beam based on the dynamic stiffness method (DSM) and its application to predict the measured output of a novel design of energy harvester that uses commercial curved transducers (THUNDER TH-7R). The DSM predictions are also verified against results from commercial finite element (FE) software. The validated results illustrate the resonance shift and shunt damping arising from the electrical effect. The magnitude, phase, Nyquist plots, and resonance frequency shift estimates from DSM and FE are all in satisfactory agreement. However, DSM has the advantage of having significantly fewer elements and is sufficiently accurate for commercial curved transducers used in applications where beam-like vibration is the predominant mode of vibration.
Collapse
|
11
|
Potrzebowska N, Cavani O, Kazmierski S, Wegrowe JE, Potrzebowski MJ, Clochard MC. Molecular dynamics between amorphous and crystalline phases of e-beam irradiated piezoelectric PVDF thin films employing solid-state NMR spectroscopy. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mechanical Durability Assessment of an Energy-Harvesting Piezoelectric Inverted Flag. ENERGIES 2021. [DOI: 10.3390/en15010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents results from a practical assessment of the endurance of an inverted flag energy harvester, tested over multiple days in a wind tunnel to provide first insights into flapping fatigue and failure. The inverted flag is a composite bimorph, composed of PVDF (polyvinylidene difluoride) strips combined with a passive metallic core to provide sufficient stiffness. The flag, derived from an earlier, more extensive study, flaps with a typical amplitude of ~120 degrees and a frequency of ~2 Hz, generating a constant power of ~0.09 mW in a wind velocity of 6 m/s. The flag was observed to complete ~5×105 cycles before failure, corresponding to ~70 h of operation. The energy generated over this lifespan is estimated to be sufficient to power a standard low-power temperature sensor for several months at a sampling rate of one sample/minute, which would be adequate for applications such as wildfire detection, environmental monitoring, and agriculture management. This study indicates that structural fatigue may present a practical obstacle to the wider development of this technology, particularly in the context of their usual justification as a ‘deploy and forget’ alternative to battery power. Further work is required to improve the fatigue resistance of the flag material.
Collapse
|
13
|
A Low-Power High-Efficiency Adaptive Energy Harvesting Circuit for Broadband Piezoelectric Vibration Energy Harvester. ACTUATORS 2021. [DOI: 10.3390/act10120327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Existing piezoelectric vibration energy harvesting circuits require auxiliary power for the switch control module and are difficult to adapt to broadband piezoelectric vibration energy harvesters. This paper proposes a self-powered and low-power enhanced double synchronized switch harvesting (EDSSH) circuit. The proposed circuit consists of a low-power follow-up switch control circuit, reverse feedback blocking-up circuit, synchronous electric charge extraction circuit and buck-boost circuit. The EDSSH circuit can automatically adapt to the sinusoidal voltage signal with the frequency of 1 to 312.5 Hz that is output by the piezoelectric vibration energy harvester. The switch control circuit of the EDSSH circuit works intermittently for a very short time near the power extreme point and consumes a low amount of electric energy. The reverse feedback blocking-up circuit of the EDSSH circuit can keep the transmission efficiency at the optimal value. By using a charging capacitor of 1 mF, the charging efficiency of the proposed EDSSH circuit is 1.51 times that of the DSSH circuit.
Collapse
|
14
|
Abstract
In the last decade, an enormous amount of attention has been paid to piezoelectric harvesters due to their flexibility in design and the increasing need for small-scale energy generation. As a result, various energy review papers have been presented by many researchers to cover different aspects of piezoelectric-based energy harvesting, including piezo-materials, modeling approaches, and design points for various applications. Most of these papers have tried to shed light on recent progress in related interdisciplinary fields, and to pave the road for future prospects in the development of these technologies. However, there are some missing parts, overlaps, and even some contradictions in these review papers. In the present review of these review articles, recommendations for future research directions suggested by the review papers have been systematically summed up under one umbrella. In the final section, topics for missing review papers, concluding remarks on outlooks and possible research topics, as well as potentially misleading strategies, have been presented. The review papers have been evaluated based on their merits and subcategories and the authors’ choice papers have been presented for each section based on clear classification criteria.
Collapse
|
15
|
Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays. ENERGIES 2021. [DOI: 10.3390/en14196094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to develop a device for harvesting electrical energy from low-speed natural wind. Four linear Halbach arrays are adopted to design a high-performance galloping harvester with the advantage of high durability and efficiency at low-frequency vibrations. The results of magnetic field analysis reveal that there are optimal sizes of the main and transit magnets of the Halbach arrays and coil to obtain the maximum magnetic flux density normal to the coil. The experimental and simulation results show that the electrical external load resistance significantly affects the vibration amplitude and the galloping onset velocity of the harvester. The results also reveal that the performance of the original design using the quadruple Halbach array was lower than that of the existing harvester because of the heavy magnet mass embedded in the tip prism. The modified design, reducing mass, improved the performance by four times compared to the original design.
Collapse
|
16
|
Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances. ENERGIES 2021. [DOI: 10.3390/en14113098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect on enhancing output power. It revealed that a small compact design with the use of magnetic, gravity, and centrifugal forces as excitation elements and a fixed piezoelectric to avoid a slip ring had a good influence on output power optimisation. One of the interesting designs that future works should focus on is using gear for frequency up-conversion to enhance output power density and keep the design simple and compact.
Collapse
|
17
|
Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications. ENERGIES 2021. [DOI: 10.3390/en14092498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the 21st century, researchers have been showing keen interest in the areas of wireless networking and internet of things (IoT) devices. Conventionally, batteries have been used to power these networks; however, due to the limited lifespan of batteries and with the recent advancements in piezoelectric technology, there is a dramatic increase in renewable energy harvesting devices. In this research, an eco-friendly wind energy harvesting device based on the piezoelectric technique is analytically modeled, numerically simulated, and statistically optimized for low power applications. MATLAB toolbox SIMSCAPE is utilized to simulate the proposed wind energy harvester in which a windmill is used to produce rotational motion due to the kinetic energy of wind. The windmill’s rotational shaft is further connected to the rotary to linear converter (RLC) and vibration enhancement mechanism (VEM) for the generation of translational mechanical vibration. Consequently, due to these alternative linear vibrations, the piezoelectric stack produces sufficient electrical output. The output response of the energy harvester is analyzed for the various conditions of piezoelectric thickness, wind speed, rotor angular velocity, and VEM stiffness. It is observed that the electrical power of the proposed harvester is proportional to the cube of wind speed and is inversely proportional to the number of rotor blades. Furthermore, an optimization strategy based on the full factorial design of the experiment is developed and implemented on MINITAB 18.0 for evaluating the statistical performance of the proposed harvester. It is noticed that a design with 3 rotor-blades, having 3 mm piezoelectric thickness, and 40 Nm−1 stiffness generates the optimum electrical response of the harvester.
Collapse
|
18
|
Jiang J, Liu S, Feng L, Zhao D. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics. MICROMACHINES 2021; 12:436. [PMID: 33919932 PMCID: PMC8070931 DOI: 10.3390/mi12040436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Piezoelectric vibration energy harvesting technologies have attracted a lot of attention in recent decades, and the harvesters have been applied successfully in various fields, such as buildings, biomechanical and human motions. One important challenge is that the narrow frequency bandwidth of linear energy harvesting is inadequate to adapt the ambient vibrations, which are often random and broadband. Therefore, researchers have concentrated on developing efficient energy harvesters to realize broadband energy harvesting and improve energy-harvesting efficiency. Particularly, among these approaches, different types of energy harvesters adopting magnetic force have been designed with nonlinear characteristics for effective energy harvesting. This paper aims to review the main piezoelectric vibration energy harvesting technologies with magnetic coupling, and determine the potential benefits of magnetic force on energy-harvesting techniques. They are classified into five categories according to their different structural characteristics: monostable, bistable, multistable, magnetic plucking, and hybrid piezoelectric-electromagnetic energy harvesters. The operating principles and representative designs of each type are provided. Finally, a summary of practical applications is also shown. This review contributes to the widespread understanding of the role of magnetic force on piezoelectric vibration energy harvesting. It also provides a meaningful perspective on designing piezoelectric harvesters for improving energy-harvesting efficiency.
Collapse
Affiliation(s)
- Junxiang Jiang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China; (J.J.); (D.Z.)
- School of Mechanical and Civil Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Shaogang Liu
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China; (J.J.); (D.Z.)
| | - Lifeng Feng
- Beijing Institute of Precision Mechatronics and Controls, CALT, Beijing 100076, China;
| | - Dan Zhao
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China; (J.J.); (D.Z.)
| |
Collapse
|
19
|
Wang Z, He L, Gu X, Yang S, Wang S, Wang P, Cheng G. Rotational energy harvesting systems using piezoelectric materials: A review. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:041501. [PMID: 34243383 DOI: 10.1063/5.0039730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/05/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, rotary energy harvesting has received more and more attention and made great progress. The energy harvesting device aims to collect environmental energy around electronic equipment and convert it into usable electrical energy, developing self-powered equipment that does not require replaceable power supplies. This paper provides a holistic review of energy harvesting techniques from rotary motion using piezoelectric materials. It introduces the basic principles of piezoelectric energy harvesting, the vibrational modes of piezoelectric elements, and the materials of piezoelectric elements. There are four types of rotational energy harvesting technologies: inertial excitation, contact execution, magnetic coupling, and hybrid systems. An overview of each technology is made, and then, a detailed analysis is carried out. Different types of rotating energy harvesting technologies are compared, and the advantages and disadvantages of each technology are analyzed. Finally, this paper discusses the future direction and goals of improving energy harvesting technology. This Review will help researchers understand piezoelectric energy harvesting to effectively convert rotational energy into electrical energy.
Collapse
Affiliation(s)
- Zhe Wang
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Lipeng He
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Xiangfeng Gu
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shuo Yang
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shicheng Wang
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Pingkai Wang
- School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Guanggming Cheng
- Institute of Precision Machinery, Zhejiang Normal University, Jinhua 130022, China
| |
Collapse
|
20
|
Tsikriteas ZM, Roscow JI, Bowen CR, Khanbareh H. Flexible ferroelectric wearable devices for medical applications. iScience 2021; 24:101987. [PMID: 33490897 PMCID: PMC7811144 DOI: 10.1016/j.isci.2020.101987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.
Collapse
Affiliation(s)
- Zois Michail Tsikriteas
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - James I. Roscow
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris R. Bowen
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Hamideh Khanbareh
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
21
|
Constructive Aerodynamic Interference in a Network of Weakly Coupled Flutter-Based Energy Harvesters. AEROSPACE 2020. [DOI: 10.3390/aerospace7120167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Converting flow-induced vibrations into electricity for low-power generation has received growing attention over the past few years. Aeroelastic phenomena, good candidates to yield high energy performance in renewable wind energy harvesting (EH) systems, can play a pivotal role in providing sufficient power for extended operation with little or no battery replacement. In this paper, a numerical model and a co-simulation approach have been developed to study a new EH device for power generation. We investigate the problem focusing on a weakly aerodynamically coupled flutter-based EH system. It consists of two flexible wings anchored by cantilevered beams with attached piezoelectric layers, undergoing nonlinear coupled bending–torsion limit cycle oscillations. Besides the development of individual EH devices, further issues are posed when considering multiple objects for realizing a network of devices and magnifying the extracted power due to nonlinear synergies and constructive interferences. This work investigates the effect of various external conditions and physical parameters on the performance of the piezoaeroelastic array of devices. From the viewpoint of applications, we are most concerned about whether an EH can generate sufficient power under a variable excitation. The results of this study can be used for the design and integration of low-energy wind generation technologies into buildings, bridges, and built-in sensor networks in aircraft structures.
Collapse
|
22
|
Abstract
The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system’s life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article.
Collapse
|
23
|
Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. MICROMACHINES 2020; 11:mi11100933. [PMID: 33066434 PMCID: PMC7602218 DOI: 10.3390/mi11100933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/19/2022]
Abstract
In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ.
Collapse
|
24
|
Mini Wind Harvester and a Low Power Three-Phase AC/DC Converter to Power IoT Devices: Analysis, Simulation, Test and Design. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wind energy harvesting is a widespread mature technology employed to collect energy, but it is also suitable, and not yet fully exploited at small scale, for powering low power electronic systems such as Internet of Things (IoT) systems like structural health monitoring, on-line sensors, predictive maintenance, manufacturing processes and surveillance. The present work introduces a three-phase mini wind energy harvester and an Alternate Current/Direct Current (AC/DC) converter. The research analyzes in depth a wind harvester’s operation principles in order to extract its characteristic parameters. It also proposes an equivalent electromechanical model of the harvester, and its accuracy has been verified with prototype performance results. Moreover, unlike most of the converters which use two steps for AC/DC signal conditioning—a rectifier stage and a DC/DC regulator—this work proposes a single stage converter to increase the system efficiency and, consequently, improve the energy transfer. Moreover, the most suitable AC/DC converter architecture was chosen and optimized for the best performance taking into account: the target power, efficiency, voltage levels, operation frequency, duty cycle and load required to implement the aforementioned converter.
Collapse
|
25
|
Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration. ENERGIES 2020. [DOI: 10.3390/en13123101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.
Collapse
|
26
|
Ultrasonic Transducers Shaped in Archimedean and Fibonacci Spiral: A Comparison. SENSORS 2020; 20:s20102800. [PMID: 32423108 PMCID: PMC7284705 DOI: 10.3390/s20102800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
We developed and investigated a particular geometry of transducers, emulating the shape of bats’ cochlea, to transmit and receive ultrasounds in the air. Their design involved the use of polyvinylidene fluoride (PVDF) as a piezoelectric material, thanks to its excellent conformability and flexibility. This material offers the primary requirements for sensing devices in applications such as sonar system or energy harvesting technology. The piezo film was folded according to both the Archimedean and Fibonacci spirals, and their performances were investigated in the frequency range from 20 kHz up to more than 80 kHz. The finite element analysis (FEA) of the proposed transducers highlighted the presence of multiple resonance vibrations, proved by the experimental measurements of the equivalent electric impedance and frequency response. Far-field radiation patterns demonstrated, horizontally and vertically, omnidirectional properties both as transmitters and receivers. All was enough to establish the best validity of the spiral shaped transducers for applications based on the bio sonar principle.
Collapse
|
27
|
Dey AA, Modarres-Sadeghi Y, Lindner A, Rothstein JP. Oscillations of a cantilevered micro beam driven by a viscoelastic flow instability. SOFT MATTER 2020; 16:1227-1235. [PMID: 31904053 DOI: 10.1039/c9sm01794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D viscoelastic instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.
Collapse
Affiliation(s)
- Anita A Dey
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
28
|
Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters. ENERGIES 2020. [DOI: 10.3390/en13030527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper is focused on resonant vibration energy harvesters (RVEHs). In applications involving RVEHs the maximization of the extraction of power is of fundamental importance and a very crucial aspect of such a task is represented by the optimization of the mechanical resonance frequency. Mechanical tuning techniques (MTTs) are those techniques allowing the regulation of the value of RVEHs mechanical resonance frequency in order to make it coincident with the vibration frequency. A very great number of MTTs has been proposed in the literature and this paper is aimed at reviewing, classifying and comparing the main of them. In particular, some important classification criteria and indicators are defined and are used to put in evidence the differences existing among the various MTTs and to allow the reader an easy comparison of their performance. Finally, the open issues concerning MTTs for RVEHs are identified and discussed.
Collapse
|
29
|
Esposito D, Andreozzi E, Gargiulo GD, Fratini A, D'Addio G, Naik GR, Bifulco P. A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition. Front Neurorobot 2020; 13:114. [PMID: 32009926 PMCID: PMC6978746 DOI: 10.3389/fnbot.2019.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022] Open
Abstract
Human machine interfaces (HMIs) are employed in a broad range of applications, spanning from assistive devices for disability to remote manipulation and gaming controllers. In this study, a new piezoresistive sensors array armband is proposed for hand gesture recognition. The armband encloses only three sensors targeting specific forearm muscles, with the aim to discriminate eight hand movements. Each sensor is made by a force-sensitive resistor (FSR) with a dedicated mechanical coupler and is designed to sense muscle swelling during contraction. The armband is designed to be easily wearable and adjustable for any user and was tested on 10 volunteers. Hand gestures are classified by means of different machine learning algorithms, and classification performances are assessed applying both, the 10-fold and leave-one-out cross-validations. A linear support vector machine provided 96% mean accuracy across all participants. Ultimately, this classifier was implemented on an Arduino platform and allowed successful control for videogames in real-time. The low power consumption together with the high level of accuracy suggests the potential of this device for exergames commonly employed for neuromotor rehabilitation. The reduced number of sensors makes this HMI also suitable for hand-prosthesis control.
Collapse
Affiliation(s)
- Daniele Esposito
- Department of Electrical Engineering and Information Technologies, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy.,Department of Neurorehabilitation, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy.,Department of Neurorehabilitation, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Gaetano D Gargiulo
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia
| | - Antonio Fratini
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Giovanni D'Addio
- Department of Neurorehabilitation, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Ganesh R Naik
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, NSW, Australia
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy.,Department of Neurorehabilitation, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| |
Collapse
|
30
|
Abstract
In the present study, a rotational piezoelectric (PZT) energy harvester has been designed, fabricated and tested. The design can enhance output power by frequency up-conversion and provide the desired output power range from a fixed input rotational speed by increasing the interchangeable planet cover numbers which is the novelty of this work. The prototype ability to harvest energy has been evaluated with four experiments, which determine the effect of rotational speed, interchangeable planet cover numbers, the distance between PZTs, and PZTs numbers. Increasing rotational speed shows that it can increase output power. However, increasing planet cover numbers can increase the output power without the need to increase speed or any excitation element. With the usage of one, two, and four planet cover numbers, the prototype is able to harvest output power of 0.414 mW, 0.672 mW, and 1.566 mW, respectively, at 50 kΩ with 1500 rpm, and 6.25 Hz bending frequency of the PZT. Moreover, when three cantilevers are used with 35 kΩ loads, the output power is 6.007 mW, and the power density of piezoelectric material is 9.59 mW/cm3. It was concluded that the model could work for frequency up-conversion and provide the desired output power range from a fixed input rotational speed and may result in a longer lifetime of the PZT.
Collapse
|
31
|
Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed. ENERGIES 2019. [DOI: 10.3390/en12244619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A square cylinder with a V-shaped groove on the windward side in the piezoelectric cantilever flow-induced vibration energy harvester (FIVEH) is presented to improve the output power of the energy harvester and reduce the critical velocity of the system, aiming at the self-powered supply of low energy consumption devices in the natural environment with low wind speed. Seven groups of galloping piezoelectric energy harvesters (GPEHs) were designed and tested in a wind tunnel by gradually changing the angle of two symmetrical sharp angles of the V-groove. The GPEH with a sharp angle of 45° was selected as the optimal energy harvester. Its output power was 61% more than the GPEH without the V-shaped groove. The more accurate mathematical model was made by using the sparse identification method to calculate the empirical parameters of fluid based on the experimental data and the theoretical model. The critical velocity of the galloping system was calculated by analyzing the local Hopf bifurcation of the model. The minimum critical velocity was 2.53 m/s smaller than the maximum critical velocity at 4.69 m/s. These results make the GPEH with a V-shaped groove (GPEH-V) more suitable to harvest wind energy efficiently in a low wind speed environment.
Collapse
|
32
|
A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wind energy harvesting is a promising way to offer power supply to low-power electronic devices. Miniature wind-induced vibration energy harvesters, which are currently being focused on by researchers in the field, offer the advantages of small volume and simple structure. In this article, an analytical model was proposed for the kinetic analysis of a flutter-based electromagnetic wind energy harvester. As a result, the critical wind speeds of energy harvesters with different magnet positions were predicted. To experimentally verify the analytical predictions and investigate the output performance of the proposed energy harvester, a small wind tunnel was built. The critical wind speeds measured by the experiment were found to be consistent with the predictions. Therefore, the proposed model can be used to predict the critical wind speed of a wind belt type energy harvester. The experimental results also show that placing the magnets near the middle of the membrane can result in lower critical wind speed and higher output performance. The optimized wind energy harvester was found to generate maximum average power of 705 μW at a wind speed of 10 m/s, offering application prospects for the power supply of low-power electronic devices. This work can serve as a reference for the structural design and theoretical analysis of a flutter-based wind energy harvester.
Collapse
|
33
|
Oscillating U-Shaped Body for Underwater Piezoelectric Energy Harvester Power Optimization. MICROMACHINES 2019; 10:mi10110737. [PMID: 31671635 PMCID: PMC6915409 DOI: 10.3390/mi10110737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
Vibration energy harvesting (VeH) techniques by means of intentionally designed mechanisms have been used in the last decade for frequency bandwidth improvement under excitation for adequately high-vibration amplitudes. Oil, gas, and water are vital resources that are usually transported by extensive pipe networks. Therefore, wireless self-powered sensors are a sustainable choice to monitor in-pipe system applications. The mechanism, which is intended for water pipes with diameters of 2–5 inches, contains a piezoelectric beam assembled to the oscillating body. A novel U-shaped geometry of an underwater energy harvester has been designed and implemented. Then, the results have been compared with the traditional circular cylinder shape. At first, a numerical study has been carried at Reynolds numbers Re = 3000, 6000, 9000, and 12,000 in order to capture as much as kinetic energy from the water flow. Consequently, unsteady Reynolds Averaged Navier–Stokes (URANS)-based simulations are carried out to investigate the dynamic forces under different conditions. In addition, an Adaptive Differential Evolution (JADE) multivariable optimization algorithm has been implemented for the optimal design of the harvester and the maximization of the power extracted from it. The results show that the U-shaped geometry can extract more power from the kinetic energy of the fluid than the traditional circular cylinder harvester under the same conditions.
Collapse
|
34
|
Voiculescu I, Li F, Kowach G, Lee KL, Mistou N, Kastberg R. Stretchable Piezoelectric Power Generators Based on ZnO Thin Films on Elastic Substrates. MICROMACHINES 2019; 10:mi10100661. [PMID: 31574971 PMCID: PMC6843214 DOI: 10.3390/mi10100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 11/16/2022]
Abstract
The paper describes a stretchable, microfabricated power generator that will be attached on the skin and will produce energy based on the movements of the human body. The device was fabricated on a polymeric, elastomeric, poly(dimethylsiloxane) (PDMS) sheet. It consists of a piezoelectric thin film of ZnO sandwiched between two stretchable gold electrodes. An innovative technique was used for the deposition of ZnO thin film on the gold electrode-coated polymeric substrate at low temperatures below 150 °C. This is the first attempt to use a uniform film of ZnO, for energy harvesting. The ZnO film had the thickness at the submicron scale and the surface at the centimeter scale. We demonstrated that under a strain of 8% the voltage output from this power generator was equal to 2 V, the power output was equal to 160 μW and the corresponding power density was 1.27 mW/cm2. This device has great potential for application in power sensors attached on the human body, such as temperature sensors or wearable electrocardiography systems.
Collapse
Affiliation(s)
- Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA (R.K.)
- Correspondence: ; Tel.: +1-212-650-5210
| | - Fang Li
- Mechanical Engineering Department, New York Institute of Technology, New York, NY 11568, USA;
| | - Glen Kowach
- Chemistry and Biochemistry Department, City College of New York, New York, NY 10031, USA;
| | - Kun-Lin Lee
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA (R.K.)
| | - Nicolas Mistou
- Mechanical Engineering Department, University of Montpellier, 34095 Montpellier, France;
| | - Russell Kastberg
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA (R.K.)
| |
Collapse
|
35
|
Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism. ENERGIES 2019. [DOI: 10.3390/en12183516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper proposes a novel energy harvesting floor structure using piezoelectric elements for converting energy from human steps into electricity. The piezoelectric energy harvesting structure was constructed by a force amplification mechanism and a double-layer squeezing structure in which piezoelectric beams were deployed. The generated electrical voltage and output power were investigated in practical conditions under different strokes and step frequencies. The maximum peak-to-peak voltage was found to be 51.2 V at a stroke of 5 mm and a step frequency of 1.81 Hz. In addition, the corresponding output power for a single piezoelectric beam was tested to be 134.2 μW, demonstrating the potential of harvesting energy from the pedestrians for powering low-power electronic devices.
Collapse
|
36
|
Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology. ENERGIES 2019. [DOI: 10.3390/en12163166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a study of a piezoelectric energy harvesting circuit based on low-power-consumption synchronized switch technology. The proposed circuit includes a parallel synchronized switch harvesting on inductor interface circuit (P-SSHI) and a step-down DC-DC converter. The synchronized switch technology is applied to increase the conversion efficiency of the circuit. The DC-DC converter is used to accomplish the impedance matching for different loads. A low-power-consumption microcontroller and discrete components are used to build the P-SSHI interface circuit. The study starts with theoretical analysis and simulations of the P-SSHI interface circuit. Simulations and experiments were conducted to validate the theoretical analysis. The experimental results show that the maximum energy harvested by the system with a P-SSHI interface circuit is 231 μW, which is 2.89 times that of a system without the P-SSHI scheme. The power consumption of the P-SSHI interface circuit can be as low as 10.6 μW.
Collapse
|
37
|
Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations. ENERGIES 2019. [DOI: 10.3390/en12142770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.
Collapse
|
38
|
You S, Zhang L, Gui J, Cui H, Guo S. A Flexible Piezoelectric Nanogenerator Based on Aligned P(VDF-TrFE) Nanofibers. MICROMACHINES 2019; 10:mi10050302. [PMID: 31060271 PMCID: PMC6562417 DOI: 10.3390/mi10050302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
Aligned P(VDF-TrFE) nanofibers are successfully fabricated by advanced electrospinning. The aligned feature of the nanofibers is achieved by using parallel electrodes, which is fabricated by lithography and wet etching, and a rotating drum collector. Scanning electron microscope (SEM) images show that the nanofibers are highly ordered with a smooth surface and uniform diameter. X-ray diffraction (XRD) and Fourier Transform Infrared spectrum (FTIR) tests indicate that the fibers contain high β phase content. The nanogenerator based on aligned P(VDF-TrFE) nanofibers exhibits good electric performance with a maximum output voltage as high as 12 V and peak-peak short circuit current about 150 nA, highlighting the potential application of P(VDF-TrFE) on self-powered and wearable devices.
Collapse
Affiliation(s)
- Sujian You
- Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118, China.
| | - Lingling Zhang
- Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jinzheng Gui
- Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Heng Cui
- Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Shishang Guo
- Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
39
|
He L, Wang Y, Gao J, Wang J, Zhao T, He Z, Zhong Z, Zhang X, Zhong L. Enhancing the Energy Density of Tricritical Ferroelectrics for Energy Storage Applications. MATERIALS 2019; 12:ma12040611. [PMID: 30781646 PMCID: PMC6416739 DOI: 10.3390/ma12040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022]
Abstract
Recently, tricritical ferroelectrics have been drawn tremendous attention, owing to their ultrahigh dielectric permittivities of up to εr > 5 × 10⁴, and their consideration for prototype materials in the development of high-performance energy storage devices. Nevertheless, such a materials system suffers from the disadvantage of low breakdown strength, which makes its energy density far from the satisfactory level for practical application. In this paper, a material-modification approach has been reported, for improving the dielectric strength for tricritical ferroelectric materials Ba(Ti1-xSnx)O₃ (BTS) through doping with Bi1.5ZnNb1.5O₇ (BZN) additives. The results suggest that the electric strength has been largely improved in the modified tricritical ferroelectric material (BTSx-yBZN), and the associated energy density reaches Ue = 1.15 J/cm³. Further microstructure investigation indicates that the modified tricritical ferroelectric material exhibits homogenous fine grains with perovskite structure in crystal symmetry, and the BZN may help to form a special structure that could enhance the breakdown strength. The findings may advance the material design and development of high-energy storage materials.
Collapse
Affiliation(s)
- Li He
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Yan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China..
| | - Jinghui Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China..
| | - Jianhong Wang
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Tongxin Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China..
| | - Zhixin He
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China..
| | - Zuting Zhong
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Xingmin Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Lisheng Zhong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China..
| |
Collapse
|
40
|
Valentin D, Roehr C, Presas A, Heiss C, Egusquiza E, Bosbach WA. Experimental and Numerical Design and Evaluation of a Vibration Bioreactor using Piezoelectric Patches. SENSORS (BASEL, SWITZERLAND) 2019; 19:E436. [PMID: 30669693 PMCID: PMC6359548 DOI: 10.3390/s19020436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
In this present study, we propose a method for exposing biological cells to mechanical vibration. The motive for our research was to design a bioreactor prototype in which in-depth in vitro studies about the influence of vibration on cells and their metabolism can be performed. The therapy of cancer or antibacterial measures are applications of interest. In addition, questions about the reaction of neurons to vibration are still largely unanswered. In our methodology, we used a piezoelectric patch (PZTp) for inducing mechanical vibration to the structure. To control the vibration amplitude, the structure could be excited at different frequency ranges, including resonance and non-resonance conditions. Experimental results show the vibration amplitudes expected for every frequency range tested, as well as the vibration pattern of those excitations. These are essential parameters to quantify the effect of vibration on cell behavior. Furthermore, a numerical model was validated with the experimental results presenting accurate results for the prediction of those parameters. With the calibrated numerical model, we will study in greater depth the effects of different vibration patterns for the abovementioned cell types.
Collapse
Affiliation(s)
- David Valentin
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain.
| | - Charline Roehr
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany.
| | - Alexandre Presas
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain.
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Christian Heiss
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany.
| | - Eduard Egusquiza
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain.
| | - Wolfram A Bosbach
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany.
| |
Collapse
|
41
|
Bochenek D, Niemiec P. Ferroelectromagnetic Properties of PbFe 1/2Nb 1/2O₃ (PFN) Material Synthesized by Chemical-Wet Technology. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2504. [PMID: 30544875 PMCID: PMC6317014 DOI: 10.3390/ma11122504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
In this work, PbFe1/2Nb1/2O₃ (PFN) ceramic samples synthesized by chemically wet method (precipitation from the solution) were obtained. Due to the tendency to form powder agglomerates, the synthesized powder was subjected to ultrasound. The sintering was carried out under various technological conditions, mainly through controlling the sintering temperature. -X-ray powder-diffraction (XRD), scanning electron microscope (SEM) microstructure analysis, as well as the examinations of dielectric, ferroelectric, and magnetic properties of the PFN ceramics were carried out. Studies have shown that hard ceramic agglomerates can be partially minimized by ultrasound. Due to this treatment, closed porosity decreases, and the ceramic samples have a higher density. Optimization and improvement of the technological process of the PFN material extends the possibility of its use for the preparation of multiferroic composites or multicomponent solid solutions based on PFN. Such materials with functional properties find applications in microelectronic applications, e.g., in systems integrating ferroelectric and magnetic properties in one device. The optimal synthesis conditions of PFN ceramics were determined to be 1050 °C/2 h.
Collapse
Affiliation(s)
- Dariusz Bochenek
- Institute of Technology and Mechatronics, Faculty of Computer Science and Material Science, University of Silesia in Katowice, 12 Zytnia St., 41⁻200 Sosnowiec, Poland.
| | - Przemysław Niemiec
- Institute of Technology and Mechatronics, Faculty of Computer Science and Material Science, University of Silesia in Katowice, 12 Zytnia St., 41⁻200 Sosnowiec, Poland.
| |
Collapse
|