1
|
Siripurapu M, Meinardi F, Brovelli S, Carulli F. Environmental Effects on the Performance of Quantum Dot Luminescent Solar Concentrators. ACS PHOTONICS 2023; 10:2987-2993. [PMID: 37602290 PMCID: PMC10436347 DOI: 10.1021/acsphotonics.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/22/2023]
Abstract
Luminescent solar concentrators (LSCs) are all-photonic, semitransparent solar devices with great potential in the emerging fields of building-integrated photovoltaics and agrivoltaics. Over the past decade, particularly with the advent of quantum dot (QD) LSCs, tremendous progress has been made in terms of photovoltaic efficiency and device size by increasing solar spectral coverage and suppressing reabsorption losses. Despite these advances in LSC design, the effects of environmental conditions such as rain, dust, and dirt deposits, which are ubiquitous in both urban and agricultural environments, on LSC performance have been largely overlooked. Here, we address these issues by systematically investigating the environmental effects on the solar harvesting and waveguiding capability of state-of-the-art QD-LSCs, namely, the presence of airborne pollutants (dust), water droplets, and dried deposits. Our results show that dust is unexpectedly insignificant for the waveguiding of the concentrated luminescence and only reduces the LSC efficiency through a shadowing effect when deposited on the outer surface, while dust accumulation on the inner LSC side increases the output power due to backscattering of transmitted sunlight. Water droplets, on the other hand, do not dim the incident sunlight, but are detrimental to waveguiding by forming an optical interface with the LSC. Finally, dried deposits, which mimic the evaporation residues of heavy rain or humidity, have the worst effect of all, combining shading and waveguide losses. These results are relevant for the design of application-specific surface functionalization/protection strategies real LSC modules.
Collapse
Affiliation(s)
- Meghna Siripurapu
- Indian
Hill School, 6855 Drake Road, Cincinnati, Ohio 45243, United States
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, Milan 20126, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, Milan 20126, Italy
- Glass
to Power, via Fortunato
Zeni 8, Rovereto I-38068, Trento, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, Milan 20126, Italy
- Glass
to Power, via Fortunato
Zeni 8, Rovereto I-38068, Trento, Italy
| | - Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, Milan 20126, Italy
| |
Collapse
|
2
|
Arrue J, Vieira A, García-Ramiro MB, Jiménez F, Grandes J, Illarramendi MA, Zubia J, Guarrotxena N. Design of more efficient luminescent solar concentrators by using peripherally dye-doped stacked optical fibers. OPTICS EXPRESS 2023; 31:23990-24004. [PMID: 37475238 DOI: 10.1364/oe.494821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Ways of improving the optical efficiency of luminescent solar concentrators based on multiple poly(methyl methacrylate) plastic optical fibers peripherally doped with two promising types of dyes are analyzed by means of a Monte-Carlo computational model developed by us. By comparing the performance of optical fibers doped with lumogen red and lumogen yellow, or combinations of them at several concentrations, this work clarifies how to achieve a better compromise between the trapping efficiency of the sunlight and the reabsorption of the light emitted by the mixture in stacked optical fibers connected to a photovoltaic solar cell.
Collapse
|
3
|
Wu H, Cheng Y, Ma J, Zhang J, Zhang Y, Song Y, Peng S. Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206574. [PMID: 36056776 DOI: 10.1002/adma.202206574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) are ideal candidates for building-integrated photovoltaics (BIPV) and tandem solar cells (TSCs) owing to their tunable bandgap and high visible transparency. The best power conversion efficiency (PCE) of ST-PSCs is close to 15% with an average visible transmittance of over 20%, which still lags far behind the PCE of normal opaque PSCs. This can be attributed to the poor light utilization efficiency (LUE) of ST-PSCs. Herein, the pivotal routes for maximizing LUE of ST-PSCs in terms of photon propagation management and carrier kinetics regulation are systematically rationalized. First, the fundamental theoretical analyses on optical processes and electronic properties are provided. Then, insights on photon propagation management measures and carrier kinetics regulation strategies are provided. Furthermore, a summary of the promising commercial application of ST-PSCs in BIPV and TSCs is provided. Finally, the main progress of ST-PSCs is briefly summarized, and the directions for the commercialization of ST-PSCs are proposed.
Collapse
Affiliation(s)
- Hangjuan Wu
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yajie Cheng
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjie Ma
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiahao Zhang
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yiqiang Zhang
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Shou Peng
- China National Building Material Group Co., Ltd., Beijing, 100036, P. R. China
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu, 233000, P. R. China
| |
Collapse
|
4
|
Architectural Experiment Design of Solar Energy Harvesting: A Kinetic Façade System for Educational Facilities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study proposes an architectural design for renewable energy production to increase energy independence in the architectural field. Among natural energy sources, solar panels that can be applied to building façades have been developed to use solar energy. To maximize renewable energy generation, solar panels can be adjusted according to the optimal tilt for each month. They can be attached to and detached from the building façade and installed on an existing building elevation. Thus, it is possible to increase the energy independence of old buildings. The solar panel developed in this study increases energy independence and presents a creative “kinetic façade,” in which solar panels move each month according to the optimal tilt angle.
Collapse
|
5
|
Liu Y, Li Y, Xu W, Chen X, Wang J, Yan S, Bao J, Qin T. Preparation of Micron-sized Methylamine-PbCl 3 perovskite grains by controlling phase transition engineering for selective Ultraviolet-harvesting transparent photovoltaics. J Colloid Interface Sci 2021; 607:1083-1090. [PMID: 34583030 DOI: 10.1016/j.jcis.2021.09.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Selective ultraviolet-harvesting transparent perovskite solar cells (T-PSCs) have attracted great interest because of their high transmittance and unique photovoltaic properties, especially in the fields of smart windows for power generation and building glass. However, owing to the unsatisfactory solubility of PbCl2 in most conventional solvents, preparing transparent methylammonium lead chloride (MAPbCl3) films with high quality and sufficient thickness by conventional methods poses a substantial challenge for their application deployment in T-PSCs. In this work, two novel strategies based on an ion-exchange procedure for controlling phase transition engineering (CPTE) are proposed. For CPTE-2, an optimized cubic phase MAPbCl3 film with a large grain size and high full coverage is prepared by transforming the tetragonal phase MAPbI3 precursor into the cubic phase MAPbCl3. Establishing relevant models based on crystal parameters investigates the formation mechanism of this high-quality MAPbCl3 film. Accordingly, the resultant T-PSCs exhibit remarkable film quality and micron-sized grains and reach an optimum efficiency of 0.33% (JSC = 0.66 mA cm-2, VOC = 1.14 V, and FF = 43.72%).
Collapse
Affiliation(s)
- You Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Yufan Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Wenxin Xu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Xianglin Chen
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Jungan Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Suhao Yan
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Jusheng Bao
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Tianshi Qin
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China.
| |
Collapse
|
6
|
Review of Bipolar Plate in Redox Flow Batteries: Materials, Structures, and Manufacturing. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00108-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications. ENERGIES 2021. [DOI: 10.3390/en14133929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aesthetic appearance of building-integrated photovoltaic (BIPV) products, such as semitransparent PV (STPV) glass, is crucial for their widespread adoption and contribution to the net-zero energy building (NZEB) goal. However, the visual distortion significantly limits the aesthetics of STPV glass. In this study, we investigate the distortion effect of transparent periodic-micropattern-based thin-film PV (PMPV) panels available in the market. To minimize the visual distortion of such PMPV glass panel types, we design and develop an aperiodic micropattern-based PV (APMP) glass that significantly reduces visual distortion. The developed APMP glass demonstrates a haze ratio of 3.7% compared to the 10.7% of PMPV glass. Furthermore, the developed AMPV glass shows an average visible transmittance (AVT) of 58.3% which is around 1.3 times higher than that of AMPV glass (43.8%). Finally, the measured CIELAB values (L* = 43.2, a* = −1.55, b* = −2.86.) indicate that our developed AMPV glass possesses excellent color neutrality, which makes them suitable for commercial applications. Based on the characterization results, this study will have a significant impact on the areas of smart window glasses that can play a vital role in developing a sustainable environment and enhancing the aesthetical appearance of net-zero energy buildings (NZEB).
Collapse
|
8
|
Kim A, Hosseinmardi A, Annamalai PK, Kumar P, Patel R. Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect 2021. [DOI: 10.1002/slct.202100674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art New York City, NY 10003 USA
| | - Alireza Hosseinmardi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pratheep K. Annamalai
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pawan Kumar
- Institut National de la Recherche Scientifique, Centre Énergie Materiaux Télecommunications (INRS-EMT) Varennes QC Canada
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE) Integrated Science and Engineering Division (ISED) Underwood International College Yonsei University 85 Songdogwahak-ro, Yeonsugu Incheon 21938 South Korea
| |
Collapse
|
9
|
Solar Potential in Saudi Arabia for Southward-Inclined Flat-Plate Surfaces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The major objective of the present work is to investigate into the appropriate tilt angles of south-oriented solar panels in Saudi Arabia for maximum performance. This is done with the estimation of the annual energy sums received on surfaces with tilt angles in the range 15°–55° inclined to south at 82 locations covering all Saudi Arabia. The analysis shows that tilt angles of 20°, 25° and 30° towards south are the optimum ones depending on site. These optimum tilt angles define three distinct solar energy zones in Saudi Arabia. The variation of the energy sums in each energy zone on annual, seasonal and monthly basis is given; the analysis provides regression equations for the energy sums as function of time in each case. Furthermore, the spatial distribution of the annual global inclined solar energy in Saudi Arabia is shown in a solar map specially derived. The annual energy sums are found to vary between 1612 kWhm−2year−1 and 2977 kWhm−2year−1 across the country. Finally, the notion of a correction factor is introduced, defined, and employed. This factor can be used to correct energy values estimated by a reference ground albedo to those based on near-real ground albedo.
Collapse
|
10
|
Reconfigurable solar photovoltaic systems: A review. Heliyon 2020; 6:e05530. [PMID: 33294678 PMCID: PMC7683345 DOI: 10.1016/j.heliyon.2020.e05530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/30/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
Even though solar power generation has become an emerging trend in the world, its penetration into the utility grid as a distributed generation source is not a satisfactory measure due to the inherent issues related to solar photovoltaic systems (SPVSs). In addressing these issues, microgrids have been identified as suitable integrating platforms for distributed, clean energy resources such as SPV. Different SPV and microgrid architectures are available for different applications depending on the resource availability and controllability. Reconfigurability is a concept that makes a system adaptable to two or more different environments by effectively utilizing the available resources. The review explains the applications of reconfigurable approaches on solar PV systems such as reconfigurable PV arrays, power conditioning unit (DC/DC converter, DC/AC inverter), microgrid controller and topology of distribution network with relevant studies. An analysis is also presented considering the unique features of reconfigurable systems in comparison to the static systems.
Collapse
|
11
|
Saeed MH, Zhang S, Cao Y, Zhou L, Hu J, Muhammad I, Xiao J, Zhang L, Yang H. Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules 2020; 25:E5510. [PMID: 33255525 PMCID: PMC7727789 DOI: 10.3390/molecules25235510] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer dispersed liquid crystals (PDLCs) have kindled a spark of interest because of their unique characteristic of electrically controlled switching. However, some issues including high operating voltage, low contrast ratio and poor mechanical properties are hindering their practical applications. To overcome these drawbacks, some measures were taken such as molecular structure optimization of the monomers and liquid crystals, modification of PDLC and doping of nanoparticles and dyes. This review aims at detailing the recent advances in the process, preparations and applications of PDLCs over the past six years.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Shuaifeng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.Z.); (J.H.)
| | - Yaping Cao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Le Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Junmei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.Z.); (J.H.)
| | - Imran Muhammad
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Jiumei Xiao
- Department of Applied Mechanics, University of Sciences and Technology Beijing, Beijing 100083, China;
| | - Lanying Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Huai Yang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| |
Collapse
|
12
|
Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization. ENERGIES 2020. [DOI: 10.3390/en13154037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parameters associated with electrical equivalent models of the photovoltaic (PV) system play a significant role in the performance enhancement of the PV system. However, the accurate estimation of these parameters signifies a challenging task due to the higher computational complexities and non-linear characteristics of the PV modules/panels. Hence, an effective, dynamic, and efficient optimization technique is required to estimate the parameters associated with PV models. This paper proposes a double exponential function-based dynamic inertia weight (DEDIW) strategy for the optimal parameter estimation of the PV cell and module that maintains an appropriate balance between the exploitation and exploration phases to mitigate the premature convergence problem of conventional particle swarm optimization (PSO). The proposed approach (DEDIWPSO) is validated for three test systems; (1) RTC France solar cell, (2) Photo-watt (PWP 201) PV module, and (3) a practical test system (JKM330P-72, 310 W polycrystalline PV module) which involve data collected under real environmental conditions for both single- and double-diode models. Results illustrate that the parameters obtained from proposed technique are better than those from the conventional PSO and various other techniques presented in the literature. Additionally, a comparison of the statistical results reveals that the proposed methodology is highly accurate, reliable, and efficient.
Collapse
|
13
|
Abstract
The rapid efficiency enhancement of perovskite solar cells (PSCs) make it a promising photovoltaic (PV) research, which has now drawn attention from industries and government organizations to invest for further development of PSC technology. PSC technology continuously develops into new and improved results. However, stability, toxicity, cost, material production and fabrication become the significant factors, which limits the expansion of PSCs. PSCs integration into a building in the form of building-integrated photovoltaic (BIPV) is one of the most holistic approaches to exploit it as a next-generation PV technology. Integration of high efficiency and semi-transparent PSC in BIPV is still not a well-established area. The purpose of this review is to get an overview of the relative scope of PSCs integration in the BIPV sector. This review demonstrates the benevolence of PSCs by stimulating energy conversion and its perspective and gradual evolution in terms of photovoltaic applications to address the challenge of increasing energy demand and their environmental impacts for BIPV adaptation. Understanding the critical impact regarding the materials and devices established portfolio for PSC integration BIPV are also discussed. In addition to highlighting the apparent advantages of using PSCs in terms of their demand, perspective and the limitations, challenges, new strategies of modification and relative scopes are also addressed in this review.
Collapse
|
14
|
Increasing the Yield of Lactuca sativa, L. in Glass Greenhouses through Illumination Spectral Filtering and Development of an Optical Thin Film Filter. SUSTAINABILITY 2020. [DOI: 10.3390/su12093740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase in world population, the continued advances in modern greenhouse agriculture and plant growth practices are expected to help overcome the global problem of future food shortages. The next generation greenhouse design practices will need to address a range of issues, ranging from energy and land use efficiency to providing plant-optimized growth techniques. In this paper, we focus on investigating the optimum irradiation spectra matched to the lettuce species (Lactuca sativa, L.), commonly grown in greenhouse environments, in order to develop low-emissivity glass panes that maximize the biomass productivity of glass greenhouses. This low-emissivity glass passes the solar spectral components needed for crop growth, while rejecting other unwanted radiations. This could potentially lead to significant energy savings and other beneficial effects related to greenhouse climate control, in a range of climates. The experimental results show that substantial biomass productivity improvements in lettuce (up to approximately 14.7%) can be attained by using spectrally optimized illumination, instead of white light illumination. This optimized wavelength is then demonstrated as being used to develop an advanced metal-dielectric thin-film filter that produces the optimized illumination spectrum when exposed to sunlight.
Collapse
|
15
|
Optical and Chromaticity Properties of Metal-Dielectric Composite-Based Multilayer Thin-Film Structures Prepared by RF Magnetron Sputtering. COATINGS 2020. [DOI: 10.3390/coatings10030251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coated glass products, and especially the low-emissivity coatings, have become a common building material used in modern architectural projects. More recently, these material systems became common in specialized glazing systems featuring solar energy harvesting. Apart from achieving the stability of optical parameters in multilayer coatings, it is also important to have improved control over the design of visual color properties of the coated glass. We prepare metal-dielectric composite (MDC)-based multilayer thin-film structures using the radio frequency (RF)-magnetron sputtering deposition and report on their optical and chromaticity properties in comparison with these obtained using pure metal-based Dielectric/Metal/Dielectric (DMD) trilayer structures of similar compositions. Experimentally achieved Hunter L, a, b values of MDC-based multilayer building blocks of coatings provide a new outlook on the engineering of future-generation optical coatings with better color consistency and developing approaches to broaden the range of achievable color coordinates and better environmental stability.
Collapse
|
16
|
Application-Specific Oxide-Based and Metal-Dielectric Thin-Film Materials Prepared by Radio Frequency Magnetron Sputtering. MATERIALS 2019; 12:ma12203448. [PMID: 31640298 PMCID: PMC6829262 DOI: 10.3390/ma12203448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/04/2022]
Abstract
We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. Among these are an unconventional magnetic hysteresis loop with an intermediate saturation state observed in garnet trilayers, and an ultrasensitive magnetic switching behaviour in garnet-oxide composites (GOC). We also report on the unusually high thermal exposure stability observed in some nanoengineered metal–dielectric multilayers. We communicate research results related to the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide-based sensor components, and heat regulation coatings for advanced construction and solar windows.
Collapse
|
17
|
Initial Field Testing Results from Building-Integrated Solar Energy Harvesting Windows Installation in Perth, Australia. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on the field testing datasets and performance evaluation results obtained from a commercial property-based visually-clear solar window installation site in Perth-Australia. This installation was fitted into a refurbished shopping center entrance porch and showcases the potential of glass curtain wall-based solar energy harvesting in built environments. In particular, we focus on photovoltaic (PV) performance characteristics such as the electric power output, specific yield, day-to-day consistency of peak output power, and the amounts of energy generated and stored daily. The dependencies of the generated electric power and stored energy on multiple environmental and geometric parameters are also studied. An overview of the current and future application potential of high-transparency, visually-clear solar window-based curtain wall installations suitable for practical building integration is provided.
Collapse
|
18
|
Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology. ENERGIES 2019. [DOI: 10.3390/en12163166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a study of a piezoelectric energy harvesting circuit based on low-power-consumption synchronized switch technology. The proposed circuit includes a parallel synchronized switch harvesting on inductor interface circuit (P-SSHI) and a step-down DC-DC converter. The synchronized switch technology is applied to increase the conversion efficiency of the circuit. The DC-DC converter is used to accomplish the impedance matching for different loads. A low-power-consumption microcontroller and discrete components are used to build the P-SSHI interface circuit. The study starts with theoretical analysis and simulations of the P-SSHI interface circuit. Simulations and experiments were conducted to validate the theoretical analysis. The experimental results show that the maximum energy harvested by the system with a P-SSHI interface circuit is 231 μW, which is 2.89 times that of a system without the P-SSHI scheme. The power consumption of the P-SSHI interface circuit can be as low as 10.6 μW.
Collapse
|
19
|
Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations. ENERGIES 2019. [DOI: 10.3390/en12081532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since building-integrated photovoltaic (BIPV) modules are typically installed during, not after, the construction phase, BIPVs have a profound impact compared to conventional building-applied photovoltaics on the electrical installation and construction planning of a building. As the cost of BIPV modules decreases over time, the impact of electrical system architecture and converters will become more prevalent in the overall cost of the system. This manuscript provides an overview of potential BIPV electrical architectures. System-level criteria for BIPV installations are established, thus providing a reference framework to compare electrical architectures. To achieve modularity and to minimize engineering costs, module-level DC/DC converters preinstalled in the BIPV module turned out to be the best solution. The second part of this paper establishes converter-level requirements, derived and related to the BIPV system. These include measures to increase the converter fault tolerance for extended availability and to ensure essential safety features.
Collapse
|