1
|
Zhang C, Yang M, Li J, Wang H, Song L, Shen L, Bai L, Lin Y, Liu J, Wang B. Polycyclic aromatic hydrocarbons emissions from biomass-fueled boilers in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135764. [PMID: 39276733 DOI: 10.1016/j.jhazmat.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Biomass serves as a sustainable energy source; however, the environmental risks associated with polycyclic aromatic hydrocarbons (PAHs) emitted from industrial biomass-fueled boilers are not well understood. This study analyzed 16 priority PAHs in both particulate and gaseous phases from 13 representative real-world industrial biomass-fueled boilers. Flue gas samples were collected from the stacks and analyzed using advanced techniques. Total PAHs concentrations ranged from 1.36 to 8870 μg m-3 (9 % O2 v/v), with benzo[a]pyrene emissions from certain boilers exceeding the allowable emissions standards for the coking chemical and petroleum refining industries in China. PAHs were predominantly found in the gaseous phase, with both gas and particle phases exhibiting similar toxicity. The average emission factor (EFmass) was 9.23 mg kg-1, while the toxicity-equivalent emission factors (EFCEQ, EFMEQ, and EFTEQ) were 1.96 × 10-2, 1.39 × 10-2 and 7.61 × 10-4 mg kg-1, respectively. It is estimated that annual PAH emissions from 2020 to 2050 will significantly decrease if biomass is used as industrial fuel in boilers (0.61 to 1.32 Gg y-1) instead of being openly burned in the field (3.39 to 7.21 Gg y-1). Overall, this study provides a comprehensive evaluation of PAH emissions from industrial biomass combustion, offering valuable data for future research and policy-making.
Collapse
Affiliation(s)
- Chunlin Zhang
- College of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong International Science and Technology Cooperation Base of Air Quality Science and Management, Guangzhou 511443, China
| | - Meixue Yang
- College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Jiangyong Li
- College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong International Science and Technology Cooperation Base of Air Quality Science and Management, Guangzhou 511443, China.
| | - Lin Song
- College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Liran Shen
- Guangdong Ecological Environmental Monitoring Center, Guangzhou 510308, China
| | - Li Bai
- Guangdong Ecological Environmental Monitoring Center, Guangzhou 510308, China
| | - Yujun Lin
- Guangdong Ecological Environmental Monitoring Center, Guangzhou 510308, China
| | - Jun Liu
- Guangdong Ecological Environmental Monitoring Center, Guangzhou 510308, China
| | - Boguang Wang
- College of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong International Science and Technology Cooperation Base of Air Quality Science and Management, Guangzhou 511443, China
| |
Collapse
|
2
|
Růžičková J, Raclavská H, Juchelková D, Šafář M, Kucbel M, Švédová B, Slamová K, Grobelak A. The use of polymer compounds in the deposits from the combustion of briquettes in domestic heating as an identifier of fuel quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8582-8600. [PMID: 34762237 DOI: 10.1007/s11356-021-17280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The utilisation of waste wood from furniture production brings new problems connected with an incomplete thermochemical decomposition of additives (chemicals for improving properties of plastics) in small heating with the addition of sources. Unique organic compounds produced by the combustion of waste wood allow the identification of the type of fuel. The organic compounds contained in the char deposits were analysed by pyrolysis gas chromatography with mass spectrometry. The deposits from the combustion of briquettes from furniture production contain organic compounds originating by decomposition of phenolic resins, aminoplasts (urea-formaldehyde, resorcinol-formaldehyde and melamine), polyurethanes and wood glue. Additives contained in the deposits include plasticisers such as phthalates (DEHP, dibutyl phthalate and diisobutyl phthalate), flame retardants (2-propanol, 1-chlorophosphate (3:1) and p-terphenyl). Deposits from the combustion of briquettes from virgin wood do not contain these compounds. The total amount of compounds identified in the deposits from the boiler, which do not come from virgin wood combustion, varies in the range between 4.25 and 6.25 g/kg. Phthalates (55.5%) and PVAc adhesives (18.6%) are the main anthropogenic compounds in the deposits from domestic boilers.
Collapse
Affiliation(s)
- Jana Růžičková
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Helena Raclavská
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Šafář
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Kucbel
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
| | - Barbora Švédová
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42-201, Czestochowa, Poland
| |
Collapse
|
3
|
Mentes D, Kováts N, Muránszky G, Hornyák-Mester E, Póliska C. Evaluation of flue gas emission factor and toxicity of the PM-bounded PAH from lab-scale waste combustion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116371. [PMID: 36202035 DOI: 10.1016/j.jenvman.2022.116371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric particulate matter (PM) has a significant threat not only to human health but also to our environment. In Hungary, 54% of PM10 comes from residential combustion, which also includes the practice of household waste burning. Therefore, this work aims to investigate the quality of combustion through the flue gas concentrations (CO, CO2, O2) and to identify and evaluate the negative impacts of PM and PAHs generated during controlled lab-scale combustion of different mixed wastes (cardboard and glossy paper, polypropylene and polyethylene terephthalate, polyester and cotton). Mixed wastes were burnt in a lab-scale tubular furnace at different temperatures with 180 dm3/h air flow rate. Chemical analyses were coupled with ecotoxicological tests using the bioluminescent bacterium Vibrio fischeri. Ecotoxicity was expressed as toxic unit (TU) values, toxic equivalent factors (TEF) were also presented. During the combustion same amount of O2 enters the reaction, but a different amount CO2 is generated due to the C content of the sample. The waste with highest C-content related to the highest CO2 emission. Increasing the combustion temperature produces more PM-bound PAHs, which remains the same composition in the case of plastic and textile groups. The TU of solid contaminants decreases with increasing combustion temperature and increases with the minerals which are left behind in the water from the solid contaminants.
Collapse
Affiliation(s)
- Dóra Mentes
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.
| | - Nóra Kováts
- Centre for Natural Sciences, University of Pannonia, 8200, Veszprém, Egyetem Str. 10, Hungary.
| | - Gábor Muránszky
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
| | - Enikő Hornyák-Mester
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.
| | - Csaba Póliska
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
| |
Collapse
|
4
|
Vidović K, Hočevar S, Menart E, Drventić I, Grgić I, Kroflič A. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46405-46437. [PMID: 35501442 DOI: 10.1007/s11356-022-20309-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/13/2022] [Indexed: 05/27/2023]
Abstract
Atmospheric gases and particulate matter (PM) in contact with the material's surface lead to chemical and physical changes, which in most cases cause degradation of the cultural heritage material. Atmospheric damage and soiling are recognized as two pivotal forms of deterioration of cultural heritage materials caused by air pollution. However, the atmospheric damage effect of PM is rather complicated; its variable composition accelerates the deterioration process. Considering this, one of the important contributions of this work is to review the existing knowledge on PM influence on atmospheric damage, further recognize, and critically evaluate the main gaps in current understanding. The second phenomenon related to cultural heritage material and PM pollution is soiling. Even if soiling was recognized long ago, its definition and knowledge have not changed much for several decades. In the past, it was believed that black carbon (BC) was the primary soiling agent and that the change of the lightness could effectively measure the soiling. With the change of pollution situation, the lightness measurements do not represent the degree of soiling correctly. The additional contribution of this work is thus, the critical evaluation of soiling measurements, and accordingly, due to the change of pollution situation, redefinition of soiling is proposed. Even though numerous studies have treated soiling and atmospheric damage separately, there is an overlap between these two processes. No systematic studies exist on the synergy between soiling and atmospheric damage caused by atmospheric PM.
Collapse
Affiliation(s)
- Kristijan Vidović
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| | - Samo Hočevar
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Eva Menart
- National Museum of Slovenia, Muzejska ulica 1, 1000, Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Ivana Drventić
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Irena Grgić
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Ana Kroflič
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
Analysis of the Effect of Catalytic Additives in the Agricultural Waste Combustion Process. MATERIALS 2022; 15:ma15103526. [PMID: 35629553 PMCID: PMC9143614 DOI: 10.3390/ma15103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022]
Abstract
This paper presents the research results of the effect of using calcium oxide and potassium permanganate on the combustion of pellets from wheat bran and beet pulp. The measurements were performed in the technical laboratory of the Centre of Energy Utilization of Non-Traditional Energy Sources in Ostrava. The research examined the effect of the use of chemical substances on the amount of air pollutants from biomass thermal conversion in a low-power boiler and the process temperature. First, we performed technical and elementary analyses of agricultural waste. The raw material was then comminuted, mixed with a selected additive, pelletized, and finally burned in a low-power boiler. The additive was added in three proportions: 1:20, 1:10, and 1:6.67 (i.e., 15%) relative to the fuel weight. The combustion process efficiency was measured using a flue gas analyzer and three thermocouples attached to the data recorder. From the measurement results, we were able to determine the percentage reduction of pollutant emissions into the atmosphere (CO, NOx, and SO2) due to the use of additives. Because emission standards are becoming increasingly stringent and fuel and energy prices are rising, the results presented in this article may be useful to agri-food processing plants that want to manage these materials thermally.
Collapse
|
6
|
Method Development for Low-Concentration PAHs Analysis in Seawater to Evaluate the Impact of Ship Scrubber Washwater Effluents. WATER 2022. [DOI: 10.3390/w14030287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A naval ship’s exhaust gas scrubber may discharge polycyclic aromatic hydrocarbons (PAHs) into seawater. Due to the high lipophilicity and low water solubility of PAHs, their concentrations in seawater are extremely low, making them difficult to detect or accurately determine. To accurately assess the impact of scrubber washwater effluent on the PAHs concentration of seawater, appropriate analysis methods must be established. In this study, a large-volume pre-concentration water sampler was used onboard to concentrate PAHs in surface seawater (100 L) from four sites offshore of southern Taiwan. The quantitative and qualitative analysis of dissolved PAHs in seawater and quality control samples were implemented using a GC/MS system with the aid of internal and surrogate standards. Results showed that the field and equipment blank samples of quality control samples were lower than twice the detection limit. The detection limit of individual PAHs is between 0.001 (naphthalene, NA) and 0.014 ng/L (dibenzo[a,h]anthracene, DBA), which meets the requirements for evaluating PAHs in seawater (that is, less than the maximum permissible concentrations (MPCs)). The concentration of total PAHs (TPAHs) in the four seawater samples ranged from 2.297 to 4.001 ng/L and had an average concentration of 3.056 ± 0.727 ng/L. The concentrations of 16 PAHs were determined in each seawater sample, indicating that the analytical method in this study is suitable for the determination of low-concentration PAHs in seawater. Phenanthrene (PHE) is the most dominant compound in seawater samples accounting for 59.6 ± 12.6% of TPAHs, followed by fluorine (FL) accounting for 8.5 ± 3.7%. The contribution of high-ring PAHs to TPAHs is not high (0.5–9.2%), but the observed concentrations can cause a higher risk to aquatic organisms than low-ring PAHs. The diagnostic ratio showed that the sources of PAHs in the seawater collected offshore of southern Taiwan may include mixed sources such as petrogenic, petroleum combustion, and biomass combustion. The results can be used for regular monitoring, which contributes to pollution prevention and management of the marine environment.
Collapse
|
7
|
Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. ENERGIES 2021. [DOI: 10.3390/en14133823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-carbon development is one of the more significant problems of the Visegrad Group countries (Czech Republic, Poland, Slovakia, and Hungary). It is related, among others, to the improvement of life quality in economic terms while taking into account activities for environmental protection. The aim of the article is to identify and explain the problems connected with low-carbon development. The purpose of the analyses is also to prove the negative impact of the emission of greenhouse gas emission (GHG) and other harmful substances into the air on the quality of human life and the natural environment. During the research, an assessment of the eco-efficiency of the used energy resources and technologies that negatively affect the environment was carried out. Moreover, the paper also presents methods to use greener energy sources and analyses the potential of implementing solutions supporting low-carbon development. The study recommends actions that may contribute to the reduction of greenhouse gas emissions. These include the limitation of the use of fossil fuels for the benefit of renewable energy and the development of distributed energy.
Collapse
|
8
|
The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions. ENERGIES 2020. [DOI: 10.3390/en13195107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food waste is generated at various food cycle stages and is considered to be a valuable feedstock in energy systems and chemical syntheses. This research identifies the potential and suitability of a representative agri-food waste sample (i.e., plum stones) as a solid fuel. Ground plum stones containing 10, 15, and 20 wt.% of rye bran were subjected to pelletization. The pelletizer was operated at 170, 220, and 270 rpm, and its power demand for the mixture containing 20 wt.% of rye bran was 1.81, 1.89, and 2.21 kW, respectively. Such pellets had the highest quality in terms of their density (814.6 kg·m−3), kinetic durability (87.8%), lower heating value (20.04 MJ·kg−1), and elemental composition (C: 54.1 wt.%; H: 6.4 wt.%; N: 0.73 wt.%; S: 0.103 wt.%; Cl: 0.002 wt.%; O: 38.2 wt.%). Whole plum stones and pellets were subjected to combustion in a 25 kW retort grate boiler in order to determine the changes in the concentrations of NO, SO2, CO, CO2, HCl, and O2 in the post-combustion flue gas. Collected results indicate that plum stone–rye bran pellets can serve as effective substitutes for wood pellets in prosumer installations, meeting the Ecodesign Directive requirements for CO and NO.
Collapse
|
9
|
Abstract
The aim of the described research was to assess the suitability of onion husk waste as a material for the production of solid fuels in the form of granules (pellets). Due to the low susceptibility to thickening of onion husks, the addition of a binder in the form of potato pulp was used (waste with a high starch content). Both wastes were subjected to elemental analysis determining the content of C, H, N, S, Cl, and their HHV (High Heating Value) and LHV (Low Heating Value). Mixtures containing the addition of 10%, 15%, and 20% potato pulp to onion husks were subjected to granulation in a “flat matrix–thickening rollers” operating system at three rotational speeds of the granulator matrix a 170, 220, and 270 rpm. The influence of the potato pulp addition and matrix rotational speed on the quality of the obtained pellet was determined. The highest quality product was combusted in a low-power boiler with a retort grate, and the content of CO, CO2, SO2, NO, and HCl in the exhaust gas was determined. The highest quality granulate was obtained from a mixture containing 10% potato pulp, which was compacted at 170 rpm matrix, where the kinetic strength was 99.50% and the density was about 650 kg·m−3. The results of the combustion emissions from onion husk granules exceed the requirements of the EcoDesign Directive with the greatest being the case of CO.
Collapse
|