1
|
Liu F, Sun Y, Wang Z, Li B, Niu S, Zhang J, Han Z, Ren L. Reversible Antireflection Materials Inspired by Cicada Wings for Anticounterfeit and Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39470170 DOI: 10.1021/acsami.4c15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Antireflection (AR) surfaces are essential for the fields of flexible displays, photovoltaic industry, medical endoscope, intelligent windows, etc. Although natural creatures with well-organized micro/nanostructures have provided some coupling design principles for the rapid development of bioinspired AR materials, the mechanical vulnerability, poor flexibility, and nonadjustability have been pointed out as the drawback of these nanostructures. Here, a bioinspired reversible AR film with 4% reflectivity, 90% transmittance, and 9% haze in broadband (400-900 nm) was prepared. The flexible switching of AR performance enhancement and weakening throughout the visible wavelength band has been achieved by controlling the reversible change in the morphology of the interface structure. A variety of patterned film samples can be obtained by simply changing the template, which can be used in intelligent identification fields such as anticounterfeiting. The cycle test and photoelectric test show that the bionic reversible antireflection structure has certain stability and can effectively reduce the loss of photovoltaic cell conversion efficiency caused by mechanical deformation. It has broad application prospects in the fields of anticounterfeiting, intelligent window, flexible display, photoelectric element, and so on.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yuhan Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
2
|
Ji X, Wang B, Zhang Z, Xiang Y, Yang H, Pan R, Li J. One-Step Dry-Etching Fabrication of Tunable Two-Hierarchical Nanostructures. MICROMACHINES 2024; 15:1160. [PMID: 39337820 PMCID: PMC11434419 DOI: 10.3390/mi15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Two-hierarchical nanostructures, characterized by two distinct configurations along the height direction, exhibit immense potential for applications in various fields due to their significantly enhanced controllable degree compared to single-order structures. However, due to the limitations imposed by planar technology, the realization of two-hierarchical nanostructures encounters huge challenges. In this work, we developed a one-step etching method based on inductively coupled plasma reactive ion etching for two-hierarchical nanostructures. Thanks to the shrinking effect of the Cr mask and the generation of a passivation layer during etching, the target materials experienced two different states from vertical etching to shrink etching. Consequently, the achieved two-hierarchical nanostructure configuration features a cross-section of an upper triangle and a lower rectangle, showing higher controllable degrees compared to the one-order ones. Both the mask pattern and etching parameters play crucial roles, by which two-hierarchical structures with diversiform shapes can be constructed controllably. This method for two-hierarchical nanostructures offers advantages including excellent control over structural properties, high processing efficiency, uniformity across large areas, and universality in materials. This developed strategy not only presents a simple and rapid nanofabrication platform for realizing optoelectronic devices, but also provides innovative ideas for designing the next generation of high-performance devices.
Collapse
Affiliation(s)
- Xu Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
| | - Bo Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
| | - Zhongshan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
| | - Yuan Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
- CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
| | - Ruhao Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.J.); (B.W.); (Z.Z.); (Y.X.); (H.Y.)
- CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
4
|
Karadzhov I, Paulillo B, Rombaut J, Koch KW, Mazumder P, Pruneri V. Mechanically-Durable Antireflective Subwavelength Nanoholes on Glass Surfaces Using Lithography-Free Fabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19672-19680. [PMID: 38576132 DOI: 10.1021/acsami.3c15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Traditional multilayer antireflection (AR) surfaces are of significant importance for numerous applications, such as laser optics, camera lenses, and eyeglasses. Recently, technological advances in the fabrication of biomimetic AR surfaces capable of delivering broadband omnidirectional high transparency combined with self-cleaning properties have opened an alternative route toward realization of multifunctional surfaces which would be beneficial for touchscreen displays or solar harvesting devices. However, achieving the desired surface properties often requires sophisticated lithography fabrication methods consisting of multiple steps. In the present work, we show the design and implementation of mechanically robust AR surfaces fabricated by a lithography-free process using thermally dewetted silver as an etching mask. Both-sided nanohole (NH) surfaces exhibit transmittance above 99% in the visible or the near-infrared ranges combined with improved angular response at an angle of incidence of up to θi = 60°. Additionally, the NHs demonstrate excellent mechanical resilience against repeated abrasion with cheesecloth due to favorable redistribution of the shearing mechanical forces, making them a viable option for touchscreen display applications.
Collapse
Affiliation(s)
- Iliyan Karadzhov
- ICFO-Institut de Ciéncies Fotóniques, Castelldefels, 08860 Barcelona, Spain
| | - Bruno Paulillo
- ICFO-Institut de Ciéncies Fotóniques, Castelldefels, 08860 Barcelona, Spain
| | - Juan Rombaut
- ICFO-Institut de Ciéncies Fotóniques, Castelldefels, 08860 Barcelona, Spain
| | - Karl W Koch
- Corning Research and Development Corporation, Sullivan Park, Corning, New York 14831, United States
| | - Prantik Mazumder
- Corning Research and Development Corporation, Sullivan Park, Corning, New York 14831, United States
| | - Valerio Pruneri
- ICFO-Institut de Ciéncies Fotóniques, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Wang Y, Shi J, Liu X, Chen B, Wang X. Modeling of the synergistic anti-reflection effect in gradient refractive index films integrated with subwavelength structures for photothermal conversion. Phys Chem Chem Phys 2024; 26:10850-10867. [PMID: 38525533 DOI: 10.1039/d4cp00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Photothermal materials generally suffer from challenges such as low photothermal conversion efficiency and inefficient full-spectrum utilization of solar energy. This paper proposes gradient refractive index transparent ceramics (GRITCs) integrated with subwavelength nanostructure arrays and simulates the synergistic anti-reflection effect by an admittance recursive model. An innovative subwavelength structure, possessing a superior light-trapping capability, is initially crafted based on this model. Subsequently, various intelligent optimization algorithms including genetic algorithm, particle swarm optimization, and simulated annealing are employed to optimize the structure of gradient refractive index films respectively. Finally, the photothermal conversion efficiencies of devices based on different photothermal materials are calculated. The simulations and finite-difference time-domain calculations demonstrate that the three-layer GRITCs integrated with an optimal SNA exhibit outstanding full-spectrum and omnidirectional anti-reflection performance. The solar transmittance of the devices can exceed 97% for light wavelengths ranging from 300 to 2500 nm over the full angle of incidence. Our results reveal that the synergistic anti-reflection effect in the SNAs and GRITCs can enhance the photothermal conversion efficiency by more than 20%.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Jingxu Shi
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiangjun Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiangfu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
- The State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology), Wuhan, 430081, China
| |
Collapse
|
6
|
Ray NJ, Yoo JH, Nguyen HT, Norton M, Cross D, Carr CW, Feigenbaum E. Enhanced laser-induced damage performance of all-glass metasurfaces for energetic pulsed laser applications. APPLIED OPTICS 2023; 62:8219-8223. [PMID: 38037922 DOI: 10.1364/ao.502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
To fabricate optical components with surface layers compatible with high-power laser applications that may operate as antireflective coatings, polarization rotators, or harness physical anisotropy for other uses, metasurfaces are becoming an appealing candidate. In this study, large-beam (1.05 cm diameter) 351-nm laser-induced damage testing was performed on an all-glass metasurface structure composed of cone-like features with a subwavelength spacing of adjacent features. These structures were fabricated on untreated fused silica glass and damage tested, as were structures that were fabricated on fused silica glass that experienced a preliminary etching process to remove the surface Beilby layer that is characteristic of polished fused silica. The laser-induced damage onset for structures on untreated fused silica glass was 19.3J⋅c m -2, while the sample that saw an initial pretreatment etch exhibited an improved damage onset of 20.4J⋅c m -2, only 6% short of the reference pretreated glass damage onset of 21.7J⋅c m -2. For perspective, the National Ignition Facility operational average fluence at this wavelength and pulse length is about 10J/c m 2. At a fluence of 25.5J⋅c m -2, the reference (pretreated) fused silica initiated 5.2 damage sites per m m 2, while the antireflective metasurface sample with a preliminary etching process treatment initiated 9.8 damage sites per m m 2. These findings demonstrate that substrate-engraved metasurfaces are compatible with high energy and power laser applications, further broadening their application space.
Collapse
|
7
|
Wang S, Cui H, Jin S, Pi X, He H, Shou C, Yang D, Wang L. Anti-reflection effect of high refractive index polyurethane with different light trapping structures on solar cells. Heliyon 2023; 9:e20264. [PMID: 37810064 PMCID: PMC10560017 DOI: 10.1016/j.heliyon.2023.e20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023] Open
Abstract
The textured surfaces to reduce light reflectivity by using acid-alkali chemical etching and SiNx films are generally necessary for commercial crystalline silicon solar cells. However, this etching process requires a large amount of environmentally harmful acid-alkali solution and has limited options for texture and size. To overcome these disadvantages, a new anti-reflection strategy is proposed in this study, which is using soft nanoimprint lithography to prepare the textured structures on the outside of the SiNx films. The polyurethane with a high refractive index of 1.64 is selected as the texture material, and different templates are selected to prepare it into different light trapping structures, including positive-inverted pyramids, inverted lace cones, and positive-inverted moth-eye nanostructures allowing for easy customization of the textured structures. The finite element simulation and experiments demonstrate that these light trapping structures have a wide spectrum anti-reflection performance in visible and near-infrared bands. With the back surface of the commercial passivated emitter rear contact (PERC) bi-facial solar cells as the imprint substrates, some light trapping structures can reduce the surface weighted average light reflectivity (Rw) at the band of 300-1200 nm from 18.31% to less than 10% and the optimal structures can reduce Rw to 8.71%. This anti-reflection strategy can also be applied to thin-film solar cells and crystalline silicon solar cells of other structures, such as HIT, Topcon, Perovskite/c-Si tandem, and so forth, which shows great development potential.
Collapse
Affiliation(s)
- Shengxuan Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sijia Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Haiyan He
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou Zhejiang 310000, China
| | - Chunhui Shou
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou Zhejiang 310000, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Jaiswal R, Martínez-Ramón M, Busani T. A semi-empirical approach to calibrate simulation models for semiconductor devices. Sci Rep 2023; 13:10436. [PMID: 37369728 DOI: 10.1038/s41598-023-36196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Semiconductor device optimization using computer-based prototyping techniques like simulation or machine learning digital twins can be time and resource efficient compared to the conventional strategy of iterating over device design variations by fabricating the actual device. Ideally, simulation models require perfect calibration of material parameters for the model to represent a particular semiconductor device. This calibration process itself can require characterization information of the device and its precursors and extensive expert knowledge of non characterizable parameters and their tuning. We propose a hybrid method to calibrate multiple simulation models for a device using minimal characterization data and machine learning-based prediction models. A photovoltaic device is chosen as the example for this technique where optical and electrical simulation models of an industrially manufactured silicon solar cell are calibrated and the simulated device performance is compared with the measurement data from the physical device.
Collapse
Affiliation(s)
- Rahul Jaiswal
- CHTM, University of New Mexico, 1313 Goddard St SE, Albuquerque, NM, 87106, USA
- ECE, University of New Mexico, 498 Terrace St NE, Albuquerque, NM, 87106, USA
| | | | - Tito Busani
- CHTM, University of New Mexico, 1313 Goddard St SE, Albuquerque, NM, 87106, USA.
- ECE, University of New Mexico, 498 Terrace St NE, Albuquerque, NM, 87106, USA.
| |
Collapse
|
9
|
Ašmontas S, Mujahid M. Recent Progress in Perovskite Tandem Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1886. [PMID: 37368318 DOI: 10.3390/nano13121886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Tandem solar cells are widely considered the industry's next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has been an increase in the perovskite/Si tandem devices' power conversion efficiency, but it is still not as high as it might be. Their instability and difficulties in large-area realization are significant challenges in commercialization. In the first part of this overview, we set the stage by discussing the background of tandem solar cells and their development over time. Subsequently, a concise summary of recent advancements in perovskite tandem solar cells utilizing various device topologies is presented. In addition, we explore the many possible configurations of tandem module technology: the present work addresses the characteristics and efficacy of 2T monolithic and mechanically stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells' power conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy for solving intrinsic instability problems.
Collapse
Affiliation(s)
- Steponas Ašmontas
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Muhammad Mujahid
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
11
|
Fraser R, Girtan M. A Selective Review of Ceramic, Glass and Glass-Ceramic Protective Coatings: General Properties and Specific Characteristics for Solar Cell Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113906. [PMID: 37297040 DOI: 10.3390/ma16113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
A review on ceramics, glasses and glass-ceramics as thin film protective coatings for solar cells is given. The different preparation techniques and the physical and chemical properties are presented in a comparative way. This study is useful for technologies involving solar cells and solar panel cell development at the industrial scale, because protective coatings and encapsulation play a major role in increasing the lifetime of solar panels and environmental protection. The aim of this review article is to give a summary of existing ceramic, glass, and glass-ceramic protective coatings and how they apply to solar cell technology: silicon, organic or perovskite cells. Moreover, some of these ceramic, glass or glass-ceramic layers were found to have dual functionality, such as providing anti-reflectivity or scratch resistance to give a two-fold improvement to the lifetime and efficiency of the solar cell.
Collapse
Affiliation(s)
- Rebekah Fraser
- P2i Ltd., 127 Olympic Avenue, Milton Park, Oxfordshire OX14 4SA, UK
| | - Mihaela Girtan
- Photonics Laboratory, (LPhiA) E.A. 4464, SFR Matrix, Faculté des Sciences, Université d'Angers, 2 Bd Lavoisier, 49000 Angers, France
| |
Collapse
|
12
|
Liao Y, Kim YJ, Lai J, Seo JH, Kim M. Antireflective GaN Nanoridge Texturing by Metal-Assisted Chemical Etching via a Thermally Dewetted Pt Catalyst Network for Highly Responsive Ultraviolet Photodiodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13343-13352. [PMID: 36880165 DOI: 10.1021/acsami.2c22929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antireflective (AR) surface texturing is a feasible way to boost the light absorption of photosensitive materials and devices. As a plasma-free etching method, metal-assisted chemical etching (MacEtch) has been employed for fabricating GaN AR surface texturing. However, the poor etching efficiency of typical MacEtch hinders the demonstration of highly responsive photodetectors on an undoped GaN wafer. In addition, GaN MacEtch requires metal mask patterning by lithography, which leads to a huge processing complexity when the dimension of GaN AR nanostructure scales down to the submicron range. In this work, we have developed a facile texturing method of forming a GaN nanoridge surface on an undoped GaN thin film by a lithography-free submicron mask-patterning process via thermal dewetting of platinum. The nanoridge surface texturing effectively reduces the surface reflection in the ultraviolet (UV) regime, which can be translated to a 6-fold enhancement in responsivity (i.e., 115 A/W) of the photodiode at 365 nm. The results demonstrated in this work show that MacEtch can offer a viable route for enhanced UV light-matter interaction and surface engineering in GaN UV optoelectronic devices.
Collapse
Affiliation(s)
- Yikai Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - You Jin Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junyu Lai
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jung-Hun Seo
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
13
|
Asl AF, Heidarzadeh H, Bahador H. Enhanced light absorption of organic solar cells based on stopped-trench metal grating. OPTICS EXPRESS 2023; 31:10554-10569. [PMID: 37157600 DOI: 10.1364/oe.461126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, the influence of dimensional parameters of the trench metal grating on the absorption efficiency of organic solar cells (OSCs) was evaluated. The plasmonic modes were calculated. Due to the capacitance-like charge distribution in a plasmonic configuration, the platform width of grating has a significant influence on the intensity of wedge plasmon polaritons (WPPs) and Gap surface plasmon (GSPs). Stopped-trench gratings would lead to better absorption efficiency than thorough-trenched gratings. The stopped-trench gratings (STG) model with a coating layer showed 77.01% integrated absorption efficiency, which is 19.6% better than previously reported works with 19% less photoactive materials. This model offered 18% integrated absorption efficiency, better than an equivalent planar structure without a coating layer. Specifying the areas with maximum generation on the structure helps us to manage and reduce the thickness and volume of the active layer to control the recombination losses and the cost. We rounded the edges and corners with a curvature radius of 30 nm to investigate tolerance during fabrication. Results demonstrated that the integrated absorption efficiency profile of the blunt model is slightly different from the integrated absorption efficiency profile of the sharp model. Finally, we have studied the wave impedance (Zx) inside the structure. Between the spectrum of λ =∼700 nm to λ=900 nm, an extremely high wave impedance layer was formed. It creates an impedance mismatch between layers and helps us to better trap the incident light ray. STG with a coating layer (STGC) is a promising way to produce OCSs with extremely thin active layers.
Collapse
|
14
|
Kim JH, Cho JW, Jeon I, Jeong KT, Kang HJ, Choi DG, Kim JH, Kim SK. Synergistically designed antireflective cover for improving wide-angle photovoltaic efficiencies. OPTICS EXPRESS 2022; 30:42406-42414. [PMID: 36366695 DOI: 10.1364/oe.476007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated that a well-designed nanopatterned cover improves photovoltaic efficiency across a wide range of incident angles (θ). A nanopatterned cover was created using an integrated ray-wave optics simulation to maximize the light absorption of the surface-textured Si photovoltaic device. A hexagonally arranged nanocone array with a 300 nm pitch was formed into a polymer using nanoimprinting, and the nanostructured polymer was then attached to a glass cover with an index-matching adhesive. Angle-resolved current density-voltage measurements on Si photovoltaic devices showed that the nanopatterned glass cover yielded a 2-13% enhancement in power conversion efficiency at θ = 0-60°, which accounted for its broadband antireflective feature. We performed all-season-perspective simulations based on the results of the integrated ray-wave optics simulations and solar altitude database of South Korea, which validated the sustainability of the developed nanopatterned cover during significant seasonal fluctuations.
Collapse
|
15
|
Oliva G, Bianco MG, Fiorillo AS, Pullano SA. Anti-Reflective Zeolite Coating for Implantable Bioelectronic Devices. Bioengineering (Basel) 2022; 9:bioengineering9080404. [PMID: 36004929 PMCID: PMC9405366 DOI: 10.3390/bioengineering9080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470–610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.
Collapse
Affiliation(s)
- Giuseppe Oliva
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonino S. Fiorillo
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence:
| | - Salvatore A. Pullano
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Zhang Z. Antireflective film of porous silica. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1172-1178. [PMID: 36215602 DOI: 10.1364/josaa.455428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 06/16/2023]
Abstract
We aimed to strengthen the antireflection coating of low refractive index, by using spinodal porous films based on phase separation of sodium borosilicate glass. Coating films were prepared by printing a glass paste onto a silica substrate, and melting at temperatures from 900°C to 1000°C, allowing phase separation at 600°C and finally etching to porosities of ∼60%. Coating with reflections as low as 0.5% was achieved, which consisted of a homogeneous porous layer of several micrometers in thickness and a graded region of up to 400 nm in width at the interface with the substrate. As to the optical property, simulations based on three-layer and two-layer models were carried out, into which was incorporated a term expressing mutual coherence degree between reflections from the surface and interface with coherence length of the light source.
Collapse
|
17
|
Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells. Sci Rep 2022; 12:9902. [PMID: 35701483 PMCID: PMC9197845 DOI: 10.1038/s41598-022-14078-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Crystalline silicon (c-Si) solar cells have dominated the photovoltaic industry for decades. However, due to high reflectivity and the presence of numerous types of surface contaminants, the solar cell only absorbs a limited amount of the incident solar radiation. To improve the efficiency of the solar cell, anti-reflection and self-cleaning coatings must be applied to the surface. The main objective of this work is to synthesize an amorphous carbon nitride CNx thin film as a novel dual-function anti-reflection coating (ARC) for c-Si solar cells. The CNx film was synthesized by the RF magnetron sputtering technique and characterized by different chemical, structural, and optical analysis techniques. The performance of CNx film was investigated via measuring the reflectance, photoelectric conversion efficiency, and external quantum efficiency. The minimum reflectance was 0.3% at 550 nm wavelength, and the external quantum efficiency achieved was more than 90% within the broad wavelength range. The open circuit voltage and short circuit current density that have been achieved are 578 mV and 33.85 mAcm−2, respectively. Finally, a photoelectric conversion efficiency of 13.05% was achieved with the coated c-Si solar cell in comparison with 5.52% for the uncoated c-Si solar cell. This study shows that CNx films have promising application potential as an efficient ARC for c-Si solar cells as compared to traditional ARC materials.
Collapse
|
18
|
Lai CJ, Tsai HP, Chen JY, Wu MX, Chen YJ, Lin KY, Yang HT. Single-Step Fabrication of Longtail Glasswing Butterfly-Inspired Omnidirectional Antireflective Structures. NANOMATERIALS 2022; 12:nano12111856. [PMID: 35683712 PMCID: PMC9182152 DOI: 10.3390/nano12111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
Most bio-inspired antireflective nanostructures are extremely vulnerable and suffer from complicated lithography-based fabrication procedures. To address the issues, we report a scalable and simple non-lithography-based approach to engineer robust antireflective structures, inspired by the longtail glasswing butterfly, in a single step. The resulting two-dimensional randomly arranged 80/130/180 nm silica colloids, partially embedded in a polymeric matrix, generate a gradual refractive index transition at the air/substrate interface to suppress light reflection. Importantly, the randomly arranged subwavelength silica colloids display even better antireflection performance for large incident angles than that of two-dimensional non-close-packed silica colloidal crystals. The biomimetic coating is of considerable technological importance in numerous practical applications.
Collapse
Affiliation(s)
- Chung-Jui Lai
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (C.-J.L.); (J.-Y.C.); (M.-X.W.); (Y.-J.C.)
| | - Hui-Ping Tsai
- Department of Civil Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan;
| | - Ju-Yu Chen
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (C.-J.L.); (J.-Y.C.); (M.-X.W.); (Y.-J.C.)
| | - Mei-Xuan Wu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (C.-J.L.); (J.-Y.C.); (M.-X.W.); (Y.-J.C.)
| | - You-Jie Chen
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (C.-J.L.); (J.-Y.C.); (M.-X.W.); (Y.-J.C.)
| | - Kun-Yi Lin
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
- Correspondence: (K.-Y.L.); (H.-T.Y.)
| | - Hong-Ta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (C.-J.L.); (J.-Y.C.); (M.-X.W.); (Y.-J.C.)
- Correspondence: (K.-Y.L.); (H.-T.Y.)
| |
Collapse
|
19
|
Characterization of Luminescent Down-Shifting Spectral Conversion Effects on Silicon Solar Cells with Various Combinations of Eu-Doped Phosphors. MATERIALS 2022; 15:ma15020452. [PMID: 35057169 PMCID: PMC8779061 DOI: 10.3390/ma15020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Luminescent down-shifting (LDS) spectral conversion is a feasible approach to enhancing the short-wavelength response of single junction solar cells. This paper presents the optical and electrical characteristics of LDS spectral conversion layers containing a single species or two species of Eu-doped phosphors applied to the front surface of silicon solar cells via spin-on coating. The chemical composition, surface morphology, and fluorescence emission of the LDS layers were respectively characterized using energy-dispersive X-ray analysis, optical imaging, and photoluminescence measurements. We also examined the LDS effects of various phosphors on silicon solar cells in terms of optical reflectance and external quantum efficiency. Finally, we examined the LDS effects of the phosphors on photovoltaic performance by measuring photovoltaic current density–voltage characteristics using an air-mass 1.5 global solar simulator. Compared to the control cell, the application of a single phosphor enhanced efficiency by 17.39% (from 11.14% to 13.07%), whereas the application of two different phosphors enhanced efficiency by 31.63% (from 11.14% to 14.66%).
Collapse
|
20
|
Jacobo-Martín A, Jost N, Hernández JJ, Domínguez C, Vallerotto G, Askins S, Antón I, Rodríguez I. Roll-to-roll nanoimprint lithography of high efficiency Fresnel lenses for micro-concentrator photovoltaics. OPTICS EXPRESS 2021; 29:34135-34149. [PMID: 34809211 DOI: 10.1364/oe.437803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Roll-to-roll nanoimprint lithography (R2R-NIL) is an enabling technology for the low-cost mass production of high-quality micro- and nano-sized optical elements. Particularly, the fabrication of Fresnel lenses using R2R-NIL is a promising approach to produce optical arrays for micro-concentrator photovoltaic modules. This work investigates the application of a continuous R2R imprinting process based on ultraviolet curing of transparent photopolymer resins (UV-NIL) to fabricate high-efficiency and low-cost Fresnel lenses. The morphological attributes and the related optical performance of the lenses fabricated using roll-to-roll UV-NIL on flexible PET sheets yielded optical efficiency values up to ∼ 69% at a concentration ratio of 178X, whereas a value of ∼ 77% was obtained for the UV-NIL batch processed on a flat rigid substrate. Further improvement of the optical efficiency has been achieved by adding moth-eye inspired antireflective (AR) features on the side opposite to the Fresnel motifs via a double-sided R2R UV-NIL process. The process developed paves the way for cost-effective mass production of high-efficiency Fresnel lenses for micro-concentrator photovoltaics.
Collapse
|
21
|
Yung KL, Xu Y, Tian W, Ko SM, Foster JA. Light absorption and hydrophobicity of a polystyrene/multiwall carbon nanotube composite with surface nanostructures. NANOTECHNOLOGY 2021; 32:385302. [PMID: 34144541 DOI: 10.1088/1361-6528/ac0cb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/12/2023]
Abstract
This paper describes an investigation into how combined carbon nanotube doping and surface nanostructuring affects the surface properties of polystyrene. Multiwall carbon nanotubes (MWCNTs) have unique anisotropic electrical properties that can be utilized for light absorption, electromagnetic shielding and nanoscale electostatic forces. Polystyrene was doped with 5 wt% MWCNTs and the resulting composite was wetted onto a porous anodic alumina template to form a nanostructure surface of nanotubes. Scanning electron microscopy revealed a hierarchical surface structure with the composite nanotubes bundled together as the MWCNTs increased the attractive forces between the composite nanotubes. Water droplet testing revealed that this hierarchical surface structure was superhydrophobic. Though the presence of the MWCNTs caused a direct increase in absorption, the hierarchical surface structure increased reflection. The addition of 5 wt% of the anionic surfactant Sodium Dodecyl Benzene Sulfonate to ensure MWCNT dispersal did not significantly change hydrophobicity or light absorption despite the hierarchical surface structure becoming finer. The created composite has potential use as a surface layer on an organic surface cell as it provides reduced cleaning needs and electrical disturbance but further work is required to reduce the reflection.
Collapse
Affiliation(s)
- Kai-Leung Yung
- Department of Industrial and Systems Engineering, Faculty of engineering, The Hong Kong Polytechnic University, Hong Kong S.A.R, People's Republic of China
| | - Yan Xu
- Department of Industrial and Systems Engineering, Faculty of engineering, The Hong Kong Polytechnic University, Hong Kong S.A.R, People's Republic of China
| | - Wei Tian
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Sui Man Ko
- Department of Industrial and Systems Engineering, Faculty of engineering, The Hong Kong Polytechnic University, Hong Kong S.A.R, People's Republic of China
| | - James Abbott Foster
- Department of Industrial and Systems Engineering, Faculty of engineering, The Hong Kong Polytechnic University, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
22
|
Hossain M, Aïssa B, Samara A, Mansour SA, Broussillou CA, Benito VB. Hydrophilic Antireflection and Antidust Silica Coatings. ACS OMEGA 2021; 6:5276-5286. [PMID: 33681568 PMCID: PMC7931203 DOI: 10.1021/acsomega.0c05405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/20/2021] [Indexed: 05/31/2023]
Abstract
We report on the optical and morphological properties of silica thin layers deposited by reactive RF magnetron sputtering of a SiO2 target under different oxygen to total flow ratios [r(O2) = O2/Ar, ranging from 0 to 25%]. The refractive index (n), extinction coefficient, total transmission, and total reflectance were systematically investigated, while field-emission scanning electron microscopy, atomic force microscopy, and three-dimensional (3D) average roughness data construction measurements were carried out to probe the surface morphology. Contact angle measurements were performed to assess the hydrophilicity of our coatings as a function of the oxygen content. We performed a thorough numerical analysis using 1D-solar cell capacitance simulator (SCAPS-1D) based on the measured experimental optical properties to simulate the photovoltaic (PV) device performance, where a clear improvement in the photoconversion efficiency from 25 to 26.5% was clearly observed with respect to r(O2). Finally, a computational analysis using OptiLayer confirmed a minimum total reflectance of less than 0.4% by coupling a silica layer with n = 1.415 with another high-refractive-index (i.e., >2) oxide layer. These promising results pave the way for optimization of silica thin films as efficient antireflection and self-cleaning coatings to display better PV performance in a variety of locations including a desert environment.
Collapse
Affiliation(s)
- Mohammad
Istiaque Hossain
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Brahim Aïssa
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Ayman Samara
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Said A. Mansour
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Cédric A. Broussillou
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Veronica Bermudez Benito
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| |
Collapse
|
23
|
A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India. SUSTAINABILITY 2020. [DOI: 10.3390/su12166596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strong energy mix of Renewable Energy Sources (RESs) is needed for sustainable development in the electricity sector. India stands as one of the fastest developing countries in terms of RES production. In this framework, the main objective of this review is to critically scrutinize the Maharashtra state energy landscape to discover the gaps, barriers, and challenges therein and to provide recommendations and suggestions for attaining the RES target by 2022. This work begins with a discussion about the RES trends in various developing countries. Subsequently, it scrutinizes the installed capacity of India, reporting that Maharashtra state holds a considerable stake in the Indian energy mix. A further examination of the state energy mix is carried out by comparing the current and future targets of the state action plan. It is found that the installed capacity of RESs accounts for about 22% of the state energy mix. Moreover, the current installed capacity trend is markedly different from the goals set out in the action plan of the state. Notably, the installed capacity of solar energy is four times less than the target for 2020. Importantly, meeting the targeted RES capacity for 2022 presents a great challenge to the state. Considering this, an analysis of the state’s strengths, barriers, and challenges is presented. Moreover, strong suggestions and recommendations are provided to clear the track to reach the desired destination. This can be useful for the government agencies, research community, private investors, policymakers, and stakeholders involved in building a sustainable energy system for the future.
Collapse
|