1
|
Tripathy S, Londhe S, Patel A, Saha S, Chandra Y, Patra CR. Copper nitroprusside analogue nanoparticles against melanoma: detailed in vitro and in vivo investigation. NANOSCALE 2024; 16:13580-13596. [PMID: 38953490 DOI: 10.1039/d4nr01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Melanoma is the most invasive and lethal form of skin cancer that arises from the malignant transformation of specialized pigment-producing cell melanocytes. Nanomedicine represents an important prospect to mitigate the difficulties and provide significant benefits to cure melanoma. In the present study, we investigated in vitro and in vivo therapeutic efficacies of copper nitroprusside analogue nanoparticles (abbreviated as CuNPANP) towards melanoma. Initially, in vitro anti-cancer activities of CuNPANP towards melanoma cells (B16F10) were evaluated by several experiments such as [methyl-3H]-thymidine incorporation assay, cell cycle and apoptosis assays using FACS analysis, ROS generation using DCFDA, DHE and DAF2A reagents, internalization of nanoparticles through ICP-OES analysis, co-localization of the nanoparticles using confocal microscopy, JC-1 staining to investigate the mitochondrial membrane potential (MMP) and immunofluorescence studies to analyze the expressions of cytochrome-c, Ki-67, E-cadherin as well as phalloidin staining to analyze the cytoskeletal integrity. Further, the in vivo therapeutic effectiveness of the nanoparticles was established towards malignant melanoma by inoculating B16F10 cells in the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of CuNPANP inhibited tumor growth and increased the survivability of melanoma mice. The in vivo immunofluorescence studies (Ki-67, CD-31, and E-cadherin) and TUNEL assay further support the anti-cancer and apoptosis-inducing potential of CuNPANP, respectively. Finally, various signaling pathways and molecular mechanisms involved in anti-cancer activities were further evaluated by Western blot analysis. The results altogether indicated the potential use of copper-based nanomedicines for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
2
|
Zhang J, Shi J, Gordon LW, Shojarazavi N, Wen X, Zhao Y, Chen J, Su CC, Messinger RJ, Guo J. Performance Leap of Lithium Metal Batteries in LiPF 6 Carbonate Electrolyte by a Phosphorus Pentoxide Acid Scavenger. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36679-36687. [PMID: 35930841 DOI: 10.1021/acsami.2c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorus pentoxide (P2O5) is investigated as an acid scavenger to remove the acidic impurities in a commercial lithium hexafluorophosphate (LiPF6) carbonate electrolyte to improve the electrochemical properties of Li metal batteries. Nuclear magnetic resonance (NMR) measurements reveal the detailed reaction mechanisms of P2O5 with the LiPF6 electrolyte and its impurities, which removes hydrogen fluoride (HF) and difluorophosphoric acid (HPO2F2) and produces phosphorus oxyfluoride (POF3), OF2P-O-PF5- anions, and ethyl difluorophosphate (C2H5OPOF2) as new electrolyte species. The P2O5-modified LiPF6 electrolyte is chemically compatible with a Li metal anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode, generating a POxFy-rich solid electrolyte interphase (SEI) that leads to highly reversible Li electrodeposition, while eliminating transition metal dissolution and cathode particle cracking. The excellent electrochemical properties of the P2O5-modified LiPF6 electrolytes are demonstrated on Li||NMC622 pouch cells with 0.4 Ah capacity, 50 μm Li anode, 3 mAh cm-2 NMC622 cathode, and 3 g Ah-1 electrolyte/capacity ratio. The pouch cells can be galvanostatically cycled at C/3 for 230 cycles with 87.7% retention.
Collapse
Affiliation(s)
- Jian Zhang
- Materials Science and Engineering Program, University of California - Riverside, Riverside, California 92521, United States
| | - Jiayan Shi
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, California 92521, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Leo W Gordon
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| | - Nastaran Shojarazavi
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, California 92521, United States
| | - Xiaoyu Wen
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, California 92521, United States
| | - Yifan Zhao
- Materials Science and Engineering Program, University of California - Riverside, Riverside, California 92521, United States
| | - Jianjun Chen
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, California 92521, United States
| | - Chi-Cheung Su
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert J Messinger
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| | - Juchen Guo
- Materials Science and Engineering Program, University of California - Riverside, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Rahman MM. Low-Cost and Efficient Nickel Nitroprusside/Graphene Nanohybrid Electrocatalysts as Counter Electrodes for Dye-Sensitized Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6563. [PMID: 34772088 PMCID: PMC8585226 DOI: 10.3390/ma14216563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Novel nickel nitroprusside (NNP) nanoparticles with incorporated graphene nanoplatelets (NNP/GnP) were used for the first time as a low-cost and effective counter electrode (CE) for dye-sensitized solar cells (DSSCs). NNP was synthesized at a low-temperature (25 °C) solution process with suitable purity and crystallinity with a size range from 5 to 10 nm, as confirmed by different spectroscopic and microscopic analyses. The incorporation of an optimized amount of GnP (0.2 wt%) into the NNP significantly improved the electrocatalytic behavior for the redox reaction of iodide (I-)/tri-iodide (I3-) by decreasing the charge-transfer resistance at the CE/electrolyte interface, lower than the NNP- and GnP-CEs, and comparable to the Pt-CE. The NNP/GnP nanohybrid CE when applied in DSSC exhibited a PCE of 6.13% (under one sun illumination conditions) with the Jsc, Voc, and FF of 14.22 mA/cm2, 0.628 V, and 68.68%, respectively, while the PCE of the reference Pt-CE-based DSSC was 6.37% (Jsc = 14.47 mA/cm2, Voc = 0.635 V, and FF = 69.20%). The low cost of the NNP/GnP hybrid CE with comparable photovoltaic performance to Pt-CE can be potentially exploited as a suitable replacement of Pt-CE in DSSCs.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
5
|
Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6030027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emerging energy demand and need to develop sustainable energy storage systems have drawn extensive attention to fundamental and applied research. Anion redox processes were proposed in cathodic materials in addition to traditional transition metal redox to boost the specific capacity and the electrochemical performance. Alternatively, copper nitroprusside (CuNP) features an electroactive nitrosyl ligand alongside the two structural metals (Fe, Cu), representing an alternative to anion redox in layered oxides. Here, a deep structural investigation is carried out on CuNP by complementing the long-range order sensitivity of X-ray diffraction (XRD) and the local atomic probe of X-ray absorption (XAS). Two different CuNP materials are studied, the hydrated and dehydrated forms. A new phase for hydrated CuNP not reported in the literature is solved, and Rietveld refined. The XAS spectra of the two materials at the Cu and Fe K-edges show a similar yet different atomic environment. The extended XAS spectra (EXAFS) analysis is accomplished by considering three- and four-body terms due to the high collinearity of the atomic chains and gives accurate insight into the first-, second-, and third-shell interatomic distances. Both materials are mounted in Li-ion and Na-ion cells to explore the link between structure and electrochemical performance. As revealed by the charge/discharge cycles, the cyclability in Na-ion cells is negatively affected by interstitial water. The similarity in the local environment and the electrochemical differences suggest a long-range structural dependence on the electrochemical performance.
Collapse
|